Database Implementation
Issues

CPSC 315 - Programming
Studio

Project 1, Lecture 5

Slides adapted from those used by
Jennifer Welch

Storing Data

* Other terminology for implementation
- Relation is a table
- Tuple is a record
- Attribute is a field

Database Implementation

Typically, we assume databases are
very large, used by many people, etc.

So, specialized algorithms are usually
used for databases

- Efficiency

- Reliability

Storing a Record (Tuple)

Often can assume all the fields are
fixed (maximum) length.

For efficiency, usually concatenate all
fields in each tuple.

Variable length: store max length
possible, plus one bit for termination

Store the offsets for concatenation in a
schema

Example: tuple storage

* Senator
- State — fixed character (2 bytes)
- YearsInSenate — integer (1 byte)
- Party — variable character (11 + 1 bytes)

.

0 101 103 104

Variable Length Fields

Storing max size may be problematic
- Usually nowhere close — waste space

- Could make record too large for a “unit” of
storage

Store fixed-length records, followed by
variable-length

Header stores info about variable fields
- Pointer to start of each

More on tuples/records

* So, schema would store:
- Name: 0
- State: 101
- YearsinSenate: 103
- Party: 104

* Note that HW/efficiency considerations
might give minimum sizes for each field
- e.g. multiple of 4 or 8 bytes

Record Headers

* Might want to store additional key
information in header of each record

- Schema information (or pointer to
schema)

- Record size (if variable length)
- Timestamp of last modification

Record Headers and Blocks Addresses

* Records grouped into blocks * Addresses of (pointers to) data often
. . . represented
- Correspond with a “unit” of disk/storage

: _ _ . * Two types of address
- Header information with record positions

- Location in database (on disk)

- Concatenate records * Translation table usually kept to map items
currently in virtual memory to the overall
Header Record 1 Record 2 |...Record /% database.

- Pointer swizzling: updating pointers to refer to
disk vs. memory locations

Adding, Deleting, Modifying

Records and Blocks Records
* Sometimes want records to span blocks * Insertion
- Generally try to keep related records in the same - If order doesn’t matter, just find a block
block, but not always possible with enough free space
- Record too large for one block * Later come back to storing tables
- Too much wasted space * If want to keep in order:
* Split parts are called fragments * If room in block, just do insertion sort
° Header Informatlon of record * |If need new bIOCk, go to overflow block

- Might rearrange records between blocks

- Is it a fragment iati
S Italragme * Other variations

- Store pointers to previous/next fragments

Adding, Deleting, Modifying
Records

* Deletion

- If want to keep space, may need to shift
records around in block to fill gap created

- Can use “tombstone” to mark deleted
records

* Modifying
- For fixed-length, straightforward

- For variable-length, like adding (if length
increases) or deleting (if length
decreases)

Indexes

* Special data structures to find all
records that satisfy some condition
* Possible indexes
- Simple index on sorted data
- Secondary index on unsorted file
- Trees (B-trees)
- Hash Tables

Keeping Track of Tables

We have a bunch of records stored
(somehow).

We need to query them (SELECT * FROM
table WHERE condition)

Scanning every block/record is far too slow

Could store each table in a subset of blocks
- Saves time, but still slow

Use an index

Sorted files

Sort records of the relation according to
field (attribute) of interest.

- Makes it a | file
Attribute of interest is search key
- Might not be a “true” key
Index stores (K,a) values
- K = search key
- a = address of record with K

Sparse Index

Dense Index (on sequential file)
* One index entry per record * Store an index for only every n records
- Useful if records are huge, and index can * Use that to find the one before, then
be small enough to fitin memory Search Sequentla”y

* Can search efficiently and then
examine/retrieve single record only

[1[5[7]7]10]12]18]18]18]27[30[35]43[44[65[73] 1 1[7[12[27]44]

O T O T O O N A

1, 5,7 |7(10/12/18|18|18|27|30|35(43/44|65|73 1|5|7]7(10/12/18|18|18(27|30|35|43|44|65

Multiple Indices Duplicate Keys
* Indices in hierarchy * Can cause issues, in both dense and
- B-trees are an example sparse indexes, need to account for
| 1]7[12]27]44] | 1]7[12]27]44]

N —

1, 5,7 |7(10/12/18|18|18|27|30|35(43/44|65|73 1, 5(7|7]10/12|18|18|18(|27|30/35(43(44|65

What if not sorted?

Can be the case when we want two or
more indices on the same data

- e.g. Senator.name, Senator.party

Must be dense (sparse would make no
sense)

Can sort the index by the search key
This second level index can be sparse

Buckets

If there are lots of repeated keys, can
use buckets

Buckets are in between the secondary
index and the data file

One entry in index per key — points to
bucket file

Bucket file lists all records with that key

Example — Secondary Index

| 1]7[12]27]44]

..///

11]5]7]7]10]12]18]|18]/18]27|30|35]43]44]65]73]

18

43

12

44

73

65

10

18

30

27

18

Storage Considerations

* Memory Hierarchy
- Cache
- Main Memory

- Secondary storage (disk)
- Tertiary storage (e.g. tape)

* Smaller amounts but faster access
* Need to organize information to

minimize “cache misses”

Storage Considerations:
Making things efficient

Placing records together in blocks for group
fetch

Prefetching

- Prediction algorithm

Parallelism

- placing across multiple disks to read/write faster
Mirroring

- double read speed
Reorder read/write requests in batches

Storage Considerations
Making it reliable

Checksums
Mirroring disks
Parity bits
RAID levels

