Solworth 25.Apr.2004
CS 485

1 of 43
Socket Programming Sockets
Jon A. Solworth
Associate Professor, Department of Computer Science,
University of Illinois at Chicago
http://www.ethos-o0s.org/~solworth
* posted on http://courses.cs.tamu.edu/faculty/choe/12summer/315 with the permission of the author.
Please do not distribute without the permission of the author (Solworth).

gﬁigisng Sockets

Solworth 25.Apr.2004  Solworth HY 1 25.Apr.2004
Qworth — Sockets a3 Couaa  Socket characteristics ey

Sockets are a protocol independent method of creating a connection between

Socket are characterized by their domain, type and transport protocol.
processes. Sockets can be either

Common domains are:

e connection based or connectionless: Is a connection established before °

: address format is UNIX pathname
communication or does each packet describe the destination?

° : address format is host and port number
e packet based or streams based: Are there message boundaries or is it

one stream?
Common types are:

e reliable or unreliable. Can messages be lost, duplicated, reordered, or

corrupted? virtual circuit: received in order transmitted and reliably
datagram: arbitrary order, unreliable
Operating Operating
- — Sockets

e — Sockets



Each socket type has one or more protocols. Ex:

e TCP/IP (virtual circuits)

e UDP (datagram)
Use of sockets:

e Connection—based sockets communicate client-server: the server waits
for a connection from the client

e Connectionless sockets are peer-to-peer: each process is symmetric.

Server performs the following actions

e socket: create the socket
e bind: give the address of the socket on the server

e listen : specifies the maximum number of connection requests that can
be pending for this process

e accept: establish the connection with a specific client
e send, recv: stream-based equivalents of read and write (repeated)
e shutdown: end reading or writing

e close: release kernel data structures

socket: creates a socket of a given domain, type, protocol (buy a phone)
bind: assigns a name to the socket (get a telephone number)

listen : specifies the number of pending connections that can be queued
for a server socket. (call waiting allowance)

accept: server accepts a connection request from a client (answer phone)
connect: client requests a connection request to a server (call)

send, sendto: write to connection (speak)

recv, recvfrom: read from connection (listen)

shutdown: end the call

Client performs the following actions

socket: create the socket
connect: connect to a server
send, recv: (repeated)
shutdown

close



socket

l'isten

accept

send/ recv

shut down

Protocol is usually zero, so that type defines the connection within domain.

Note that the socket returns a socket descriptor which is the same as a file

descriptor (-1 if failure).

socket

connect

send/ recv

shut down

I R

AW N e

#include <sys/types.h>
#include <sys/socket.h>

int socket(int domain, int type, int protocol);

Returns a file descriptor (called a socket ID) if successful, -1 otherwise.

The type argument can be:

o SOCK STREAM: Establishes a virtual circuit for stream

e SOCK DGRAM: Establishes a datagram for communication

e SOCK SEQPACKET: Establishes a reliable, connection based, two way
communication with maximum message size. (This is not available on
most machines.)

#include <sys/types.h>
#include <sys/socket.h>

int bind(int sid, struct sockaddr xaddrPtr, int len)

Where

e sid: is the socket id
e addrPtr: is a pointer to the address family dependent address structure

e len: is the size of xaddrPtr

Associates a socket id with an address to which other processes can connect.
In internet protocol the address is [ipNumber, portNumber]



For the internet fan'nly: \ [finclude <sys/types h>
LU so.ckaddr,ln-{ ) 2 #include <sys/socket.h>
2 sa_family_t sin_family; // = AF_INET 5
3 in_port_t sin_port ; // is a port number slint listen (int sid, int size);
4| struct in_addr sin_addr; // an IP address
5 |}

Where size it the number of pending connection requests allowed (typically

. . limi nix kernel .
For unix sockets (only works between processes on the same machine) liipcze) (9 Ll (e 5 8

l Struuiﬁtt;imkaddr’uzu{nilength ; /) Returns the 0 on success, or -1 if failure.
3| short sun_family ; // = AF_LOCAL
4| char sun_path [100]; // null terminated pathname
5 // (100 is posix 1.g minimum)
6
}

When using internet sockets, the second parameter of bind (of type
sockaddr_in *) must be cast to (sockaddr x).

finclude <sys/types.h> There are basically three styles of using accept:

#include <sys/socket.h>

2 W N =

Iterating server: Only one socket is opened at a time. When the processing
on that connection is completed, the socket is closed, and next connection
can be accepted.

int accept(int sid, struct sockaddr xaddrPtr, int xlenPtr)

Returns the socketld and address of client connecting to socket.

Forking server: After an accept, a child process is forked off to handle the
connection. Variation: the child processes are preforked and are passed
the socketld.

if lenPtr or addrPtr equal zero, no address structure is returned.

lenPtr is the maximum size of address structure that can be called, returns

the actual value. . . .
Concurrent single server: use select to simultaneously wait on all open

. . . . . socketlds, and waking up the process only when new data arrives.
Waits for an incoming request, and when received creates a socket for it. 2 E o y



e lterating server is basically a low performance technique since only one
connection is open at a time.

#include <sys/types.h>
#include <sys/socket.h>

I R

int send(int sid, const char xbufferPtr, int len, int flag)

e Forking servers enable using multiple processors. But they make sharing

state difficult, unless performed with threads. Threads, however present

a very fragile programming environment. Send a message. Returns the number of bytes sent or -1 if failure. (Must
be a bound socket).

e Concurrent single server: reduces context switches relative to forking
processes and complexity relative to threads. But does not benefit from flag is either
multiprocessors.

e 0: default

e MSG OOB: Out-of-band high priority communication

1 |#include <sys/types.h> 1 |#include <sys/types.h>

2 #include <sys/socket.h> 2 #include <sys/socket.h>

8 3

4lint recv(int sid, char xbufferPtr, int len, int flags) 4lint shutdown(int sid , int how)
Receive up to len bytes in bufferPtr. Returns the number of bytes received Disables sending (how=1 or how=2) or receiving (how=0 or how=2).
or -1 on failure. Returns -1 on failure.
flags can be either acts as a partial close.

o 0: default
e VISG OOB: out-of-bound message

e VISG PEEK: look at message without removing



this is the first of the client calls Note that a connection is denoted by a 5-tuple:
1 /#include <sys/types.h>
2 #include <sys/socket.h>
3 e from IP
4lint connect(int sid, struct sockaddr xaddrPtr, int len)

e from port
Specifies the destination to form a connection with (addrPtr), and returns
a 0 if successful, -1 otherwise. e protocol

e to IP

e to port

So that multiple connections can share the same IP and port.

Note that the initiator of communications needs a fixed port to target We next consider a number of auxiliary APls:
communications.

This means that some ports must be reserved for these “well knowned” o e b slciue cessibes ) hestnaine pals
ports. . )

e gethostbyname: hostent of a specified machine
Port usage:

e htons, htonl, ntohs, ntohl: byte ordering
e (0-1023: These ports can only be binded to by root

e inet pton, inet ntop: conversion of IP numbers between presentation

and strings
e 1024-5000: well known ports

e 5001-64K-1: ephemeral ports



-

w

-

w

g A W N e

#include <unistd .h>

int gethostname(char xhostname, size_t namelength)

Returns the hostname of the machine on which this command executes
(What host am i?). Returns -1 on failure, 0 on success.

MAXHOSTNAMELEN is defined in <sys/param.h>.

Auxiliary functions

#include <netdb.h>

struct hostent *xgethostbyname(const char xhostname)

Translates a DNS name into a hostent.

Example:

struct hostent xhostEntity =
gethostbyname(” bert.cs.uic.edu”);

memcpy (socketAddr—>sin _addr ,
hostEntity—h_addr_list [0],
hostEntity —h _length );

~ o 0 A W N e

© ©® N o O A W N =

=
= o

struct hostent {
char xh_name; // official (canonical) name of the host
char =+ h aliases; // null terminated array of alternative
int h_addrtype; // host address type AF_INET or AF_INET6
int h_length ; // 4 or 16 bytes
char «xh_addr_list;// IPv4 or IPv6 list of addresses

}

Error is return through h error which can be:

e HOST NOT_FOUND
e TRY AGAIN
e NO RECOVERY

e NO_DATA

Network ordering in big endian. (Sparc is big endian, Intel is little endian).

// Host to network byte order for shorts (16 bit)
uint_16t htons(uint_16t v);

// Host to network byte order for long (32 bit)
uint_32t htonl(uint_32t v);

// Network to host byte order for long (16 bit)
uint_16t ntohs(uint_16t v);

// Network to host byte order for long (32 bit)
uint_32t ntohl(uint_32t v);

hostnan




IP address strings to 32 bit number

-

#include <arpa/inet.h>

In what follows, 'p’' stands for presentation.

w

int inet_pton(int family , const char xstrPtr, void xaddrPtr);

Hence, these routines translate between the address as a string and the

returns 1 if OK, 0O if presentation error, -1 error
address as the number.

. Where family is either AF INET or AF INETS6.
Hence, we have 4 representations:

The strPtr is the IP address as a dotted string.
e [P number in host order

Finally, addrPtr points to either the 32 bit result (AF INET) or 128 bit
e |P number in network order result (AF_INETS6).

e Presentation (eg. dotted decimal)

e Fully qualified domain name

Only the last needs an outside lookup to convert to one of the other formats.

include <arpa/inet.h> Without error checking.

sockaddr_in serverAddr;

int inet ntop(int family , const char xaddrPtr, sockaddr &serverAddrCast = (sockaddr &) serverAddr;

char xstrPtr, size_t len);

2 W N =

// get a tcp/ip socket
int listenFd = socket(AF_INET, SOCKSTREAM, 0);

returns 1 if OK, 0 if presentation error, -1 error
bzero(&serverAddr , sizeof(serverAddr));
serverAddr.sin_family = AF_INET;

// any internet interface on this server.
serverAddr.sin_addr.s_addr = htonl(INADDR.ANY);
serverAddr.sin_port = htons(13);

Where family is either AF INET or AF INET6.

© 0 N o O A W N e

The strPtr is the return IP address as a dotted string.

= e
N = O

Finally, addrPtr points to either the 32 bit (AF INET) or 128 bit
(AF_INETS).

-
w

bind(listenFd , &serverAddrCast , sizeof(serverAddr));

=
(SIS

Length is the size of destination. i ({LstadlFel s 973

=
~N o

for (5 ;) {
int connectFd =
accept(listenFd , (sockaddr =) NULL, NULL);

=
© ©®




20 // .. read and write operations on connectFd

21 shutdown (connectFd , 2);
22 close (connectFd);
23|}

Note that the above is an iterative server, which means that it serves one
connection at a time.

To build a concurrent server:

e a fork is performed after the accept.
e The child process closes listenFd, and communicates using connectFd.

e The parent process closses connectFd, and then loops back to the accept
to wait for another connection request.

Communication is symmetric (peer-to-peer)

e socket

e bind: bind is optional for initiator
e sendto, recvfrom (repeated)

e shutdown

e close

© © N o O A W N e

sockaddr_in serverAddr;
sockaddr &serverAddrCast = (sockaddr &) serverAddr;

// get a tcp/ip socket
int sockFd = socket(AF_INET, SOCKSTREAM, 0);

bzero(&serverAddr , sizeof(serverAddr));
serverAddr.sin_family = AF_INET;

// host IP # in dotted decimal format!

inet_pton (AF_INET, serverName, serverAddr.sin_addr);
serverAddr.sin_port = htons(13);

connect (sockFd, serverAddrCast, sizeof(serverAddr));
// .. read and write operations on sockFd

shutdown (sockFd , 2);

close (sockFd);

sendt o/

recvfrom

shut down




(& T N URY

It is not necessary for both sockets to bind

e The receiver gets the address of the sender

It is possible for a UDP socket to connect

e In this case, send/recv (or write/read) must be used instead of
sendto/recvfrom.

e Asynchronous errors can be returned (using ICMP)

for connectionless protocols

#include <sys/types.h>
#include <sys/socket.h>

int recvfrom(int sid, void xbufferPtr, int bufferLength ,
int flag , sockaddr xaddrPtr, int xaddrLengthPtr)

Receive a buffer in bufferPtr of maximum length bufferLength from an
unspecified sender.

Sender address returned in addrPtr, of size *addrlengthPtr.

Returns number of bytes receive or -1 on error.

[ NS, T VR R

© ® N o O A~ W N =

R T S O T T
S © ® N o O &~ W N = O

for connectionless protocols

#include <sys/types.h>
#include <sys/socket.h>

int sendto(int sid, const void xbufferPtr,
size_t bufferLength , int flag,
struct sockaddr xaddrPtr, socklen_t addrLength)

Send a buffer, bufferPtr, of length bufferLength to address specified by
addrPtr of size addrlLength. Returns number of bytes sent or -1 on error.

int socketld = socket (AF_INET, SOCK.DGRAM, 0);

sockaddr_in serverAddr, clientAddr;
sockaddr &serverAddrCast = (sockaddr &) serverAddr;
sockaddr &clientAddrCast = (sockaddr &) clientAddr;

// allow connection to any addr on host

// for hosts with multiple network connections
// and ast server port.

serverAddr.sin_family = AF_INET;
serverAddr.sin_port = htons(serverPort);
serverAddr.sin_addr.s_addr = INADDR_ANY;

// associate process with port
bind (socketld , &serverAddrCast , sizeof(addr));
// receive from a client

int size = sizeof(clientAddr);

recvfrom (socketld , buffer, bufferSize,

0, clientAddrCast, & size);




21 .

t ketld = ket (AF_INET, SOCK.DGRAM, 0);
2| // reply to the client just received from ; e soene socket ( )
. sendto(so(c)ketllq ! tzzf;eé’ tbuff(.erS|z'e ! 3 sockaddr_in serverAddr, clientAddr;

N cenen #Ges  Dilea e 4| sockaddr &serverAddrCast = (sockaddr &) serverAddr;
- 5| sockaddr &clientAddrCast = (sockaddr &) clientAddr;
2 close (socketld); .
7 // specify server address, port
8 serverAddr.sin_family = AF_INET;
9| serverAddr.sin_port = htons(serverPort);
10 struct hostent *hp = gethostbyname(hostName);
11| memcpy((charx)&serverAddr.sin_addr,
12 (char*)hp—>h_addr, hp—h _length);
13
| // no need to bind if not peer—to—peer
15| int size = sizeof(serverAddr);
16 sendto (socketld , buffer, bufferSize, 0,
17 serverAddrCast , size);
18
19 recvfrom (socketld , buffer, bufferSize, 0,
20 serverAddrCast, &size);
21
2| close(socketld);
accept, 14 send, 17
bind. 11 shutdown, 19
socket, 9
connect, 20 struct hostent, 25

gethostbyname, 26
gethostname, 24

htonl, 27
htons, 27

x _ntop, 30
X _pton, 29

listen, 13

ntohl, 27
ntohs, 27

recv, 18



