SOLID Principles for
Object-Oriented Design

CSCE 315: Programming Studio

Instructor: Yoonsuck Choe

Slides based on Robert Martin’s book and web

page http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod

See the URL above for diagram notations.

Topic motivated by Chris Weldon @ Improving.

History of SOLID

Robert C. Martin is the main person behind these ideas
(some individual ideas predate him though).

e First appeared as a news group posting in 1995.

e Full treatment given in Martin and Martin, Agile
Principles, Patterns, and Practices in C#, Prentice
Hall, 2006. (The PPP book)

e Lots of online learning material (find on your own).

SOLID Principles

e Acronym of acronyms:
— SRP: Single Responsibility Principle
— OCP: Open-Closed Principle
— LSP: Liskov Substitution Principle
— ISP: Interface Segregation Principle
— DIP: Dependency Inversion Principle

e Basically a set of principles for object-oriented

design (with focus on designing the classes).

Benefits of SOLID

e Provides a principled way to manage dependency.

e Serves as a solid foundation for OOD upon which
more complicated design patterns can be built upon

and incorporated naturally.

e Results in code that are flexible, robust, and

reusable.

First Pass at Understanding SOLID

SRP: “A class should have one, and only one,
reason to change”.

OCP: “You should be able to extend a class’s
behavior, without modifying it”

LSP: “Derived classes must be substitutable for their
base classes.”

ISP: “Make fine grained interfaces that are client
specific.”

DIP: “Depend on abstrations, not on concretions.”

5

SRP: Cont’d

Computational Rectangle Graphical
Geometry App
App l

Geometric

Rectangle GuI

Solution: Take the purely computational part of the
Rectangle class and create a new class “Geometric

Rectangle”.

All changes regarding graphical display can then be

localized into the Rectangle class.

SRP: Single Responsibility Principle

Computational Rectangle Graphical
Geometry = = App

o

e Example: Rectangle class with draw() and area()

e Computational geometry now depends on GUI, via
Rectangle.

e Any changes to Rectangle due to Graphical
application necessitates rebuild, retest, etc. of
Comp. geometry app.

SRP: Another example

e Modem: dial(), hangup(), send(), recv(), ...

e However, there are two separate kinds of functions

that can change for different reasons:
— Connection-related

— Data communication-related
e These two should be separated.

e Recall that “Responsibility” == “a reason to change”.

SRP: Summary

“SRP is the simplest of the principles, and one of the

hardest to get right.”
We tend to join responsibilities together.

SRP says we need to go against this tendency.

OCP: Abstraction is Key

Bad design: need to

change client code when new kinds of server needed.

Client o Server

Good design: can extend

to new types of servers without modifying client code.

Abstract

Client o Server

Server

11

OCP: Open-Closed Principle

“All systems change during their life cycles.” (Ivar
Jacobson).

“Software entities should be open for extension, but
closed for modification.” (variation on Bertrand
Meyer’s idea).

Goal: avoid a “cascade of changes to dependent
modules”.

When requirements change, you extend the
behavior, not changing old code.

10

OCP: Data-Driven Approach

In many cases, complete closure (closure to

modification) may not possible.

Data-driven approach can be taken to minimize and
localize changes to a small region of code that only
contain data, not code.

For example, there can be a table that contains a
specific ordering based on the requirements, where
the requirements are expected to change.

12

OCP: Foundation for Many

Heuristics

OCP leads to many heuristics and conventions.
e Make all member variables private.
e No global variables, EVER.

e Run time type identification (e.g., dynamic cast) is

dangerous.

e etc.

13

LSP: Liskov Substitution Principle

e “Functions that use pointers or references to base
classes must be able to use objects of derived
classes without knowing it.” (original idea due to

Barbara Liskov).

e Violation means the user class’s need to know ALL
implementation details of the derived classes of the

base class.

e Violation of LSP leads to the violation of OCP.

15

OCP: Summary

e OCP is “at the heart of OOD".

e Simply using an OOP is not enough: Need
dedication to apply abstraction.

e OCP can greatly enhance reusability and
maintainability.

14

LSP: Example

Rectangle Class «— Square Class

e Problem: setWidth(), setHeight() in Rectangle class
are not a good fit for Square class.

e When Square class is used where Rectangle class
is called for, behavior can be unpredictable,
depending on implementation.

e Want either setWidth() or setHeight() to set both
width and height in the Square class.

e LSP is violated when adding a derived class
requires modifications o1f6the base class.

LSP: Lessons Learned

e Cannot assess vailidty of a class by just looking
inside a class: We must see how it is used.

e “|SA relationship pertains to behavior’, extrinsic,
public behavior!

— Square is a Rectangle, but they behave
differently, seen from the outside.

e For LSP to hold, ALL derived classes should
conform to the behavior that the clients expect of the
base classes.

17

ISP: Interface Segregation Principle

e “Clients should not be forced to depend upon
interfaces that they do not use.”

e Avoid “fat interfaces”.

e Fat interfaces: interfaces of a class that can be
broken down into groups that server differnt set of

clients.

e Clients depending on a subset of interfaces need to
change when other clients using a different subset
changes.

19

LSP: Summary

LSP is an important property that holds for all

programs that conform to the Open-Closed principle.

LSP encourages reuse of base types, and allows

modifications in the derived class without damaging

other components.

18

ISP: Example

Bad design
TimerClient
L Door
T— TimedDoor

Good design

Abstract Abstract

Door TimerClient

‘ Door TimerClient
Timed DoorTimer

Door [O Adapter
i A

Timed
Door

Clients that use Door or TimerClient access only
those speficied interfaces.

ISP: Summary DIP: Dependency Inversion Principle

e “A. High level modules should not depend upon low

e Should avoid interfaces that are not specific to a level modules. Both should depend upon
single client. abstractions.”

e Fat interfaces cause inadvertant coupling between e “ B. Abstractions should not depend upon details.
unrelated clients. Details should depend upon abstractions.”

e DIP is an out-growth of OCP and LSP.

e “Inversion”, because standard structured
programming approaches make the higher level
depend on lower level.

21 22
DIP: The Problem DIP: Example
e Bad design: Copy(): uses ReadKeyboard() and WritePrinter(char c);
— Hard to change (rigidity) e Copy() is a general (high-level) functionality we want
— Unexpected parts break when changing code to reuse.
(fragility) e The above design is tied to the specific set of
— Hard to reuse (immobility) hardware, so it cannot be reused to copy over
e Cause of bad design: diverse hardware components.
— Interdependence of the modules e Also, it needs to take care of all sorts of error
— Things can break in areas with NO conceptual conditions in the keyborad and printer component

relationship to the changed part. (lots of unncessary details creep in).

— Dependent on unnecessary detail. o

DIP: Diagnosis of Copy()

Module containing high level policy (Copy) is
dependent upon low level detailed modules it
controls (WritePrinter, ReadKeyboard).

]

Good design:

Abstract Abstract
Reader Writer

Keyboard Printer
Reader Writer

Encourages reuse of higher level policies.

25

DIP: Another Example

Bad Design
Button <—— Lamp

When button changes, lamp has to be at least

recompiled. Cannot reuse button for different device.

Good Design
Abstract Abstract

Button Lamp
Implementation

Can further introduce LampAdapter.

27

DIP: Layering and Better Layering

e Bad Design

v
Utility Layer
e Good Design
Abstract
Policy Layer- - -= Mechanism
Interface
Mechanism Abstract
Layer T77 777 Utility Interface
Utility Layer

Policy layer not dependent on lower levels, thus can
be reused. 26

DIP: Summary

DIP promises many benefits of OO paradigm.
Reusability is greately enhanced by DIP.
Code can be made resilient to change by using DIP.

As a result, code is easier to maintain.

28

SOLID Principles: Summary

e Help manage dependency.

e Improved maintainability, flexibility, robustness, and

reusability.

e Abstraction is important

29

