Collaborative Construction

Working on code development in close
cooperation with others

* Idea
- Developers don’t notice their own errors
CPSC 315 — Programming Studio very easily
- Others won't have the same blind spots
adapted from John Keyser's 315 slides - Thus, errors are Caught more eaSin by

other people

Takes place during the construction
process

Benefits of Collaborative
Construction

* Can be much more effective at finding errors
than testing alone

- 35% errors found through testing through low-

More Benefits

Creates collaborative ownership
- No single “owner” of code

volume Beta level - People can leave team more easily, since
- 55-60% errors found by design/code inspection others have seen code
* Finds errors earlier in the process - Wider p00| of peop|e to draw from when
- Reduces time and cost of fixing them fixing later errors in code

* Provides mentoring opportunity

- Junior programmers learn from more senior
programmers

Some Types of Collaborative
Construction

* Formal inspections
* Walkthroughs

* Code reading

* Pair programming

Reviews vs. Testing

Finds different types of problems than testing
Unclear error messages

Bad commenting

Hard-coded variable names

Repeated code patterns

Only high-volume beta testing (and
prototyping) find more errors than formal
inspections

Inspections typically take 10-15% of budget,
but usually reduce overall project cost

Code Reviews

Method shown to be extremely effective in
finding errors

- ratio of time spent in review vs. later testing and
error correction ranges from 1:20 to 1:100

- Reduced defect correction from 40% of budget to
20%

- Maintenance costs of inspected code is 10% of
non-inspected code

- Changes done with review: 95% correct vs. 20%
without

- Reviews cut errors by anywhere from 20% to
80%
- Several others (examples from Code Complete)

Formal Inspection
Characteristics

Focus on detection, not correction
Reviewers prepare ahead of time and arrive
with a list of what they’ve discovered

- Don’'t meet unless everyone is prepared
Distinct roles assigned to participants

- Stick to these roles during review

Data is collected and fed into future reviews

- Checklists focus reviewers'’ attention on common
past problems

Roles during Inspection

Moderator
Author
Reviewer(s)
Scribe
Management

3 people min

~6 people
max

Roles during Inspection
Moderator *Plays minor role

* Design/Code should speak
for itself

Reviewer(s) ,
* Should explain parts that

Scribe)
aren’t clear
Management * But this alone can be a
_ problem
3 people min * Explain why things that
~0 people seem to be errors aren’t

max *Might present overview

Roles during Inspection

* Keeps review moving

Author Not too fast or slow
Reviewer(s) * Technically competent
Scribe * Handles all meeting
Management details

* distributing design/code

3 people min * distributing checklist
~6 people * Setting up room
max * Report and followup

Roles during Inspection

Moderator * Interest in code but not
Author an author

* Find errors during
Scribe preparation
Management * Find more errors during

meeting

3 people min
~6 people
max

Roles during Inspection

Moderator * Records errors found
Author and action assigned or
Reviewer(s) planned
* Should not be moderator
or author
Management
3 people min
~6 people
max

Stages of Inspection —
Planning

Author gives code/design to moderator

Moderator then:
chooses reviewers

ensures code is appropriate for review
e.g. line numbers printed

distributes code and checklist
sets meeting time

Roles during Inspection

Moderator * Usually should not be
Author involved

* Changes from technical to

Reviewer(s) . ,
political meeting

Scribe *Might need to see results
of meeting

3 people min

~6 people

max

Stages of Inspection —
Overview

If reviewers aren’t familiar with code at
all, can have overview

Author gives a brief description of
technical requirements for code

Separate from review meeting
Can have negative consequences

Groupthink

Minimize points that should be more
important

Stages of Inspection —
Preparation

* Reviewers work alone to scrutinize for errors

- Checklist can guide examination

* Depending on code, review rate varies
- 125 to 500 lines per hour

* Reviewers can have varied “roles”

- be assigned “perspective”
° e.g. evaluate from user’s view, or from designer’s view
- evaluate different scenarios

° e.g. describe what code does, or whether requirement
is met

- read code/design in certain order/way
° e.g. top-down, or bottom-up

Stages of Inspection —
“Third Hour” meeting

* Depending on interest/stake of
reviewers, possibly hold a separate
followup meeting

- Immediately after inspection meeting

* Focus here is to discuss possible
solutions

Stages of Inspection —
Inspection Meeting

A reviewer chosen to paraphrase design or read
code

- Explain all logic choices in program
Moderator keeps things moving/focused

Scribe records errors when found
- Record type and severity

Don't discuss solutions!
- Only focus is on identifying problems

- Sometimes don’t even discuss if it actually is an error —if it
seems like one, it is one

No more than 1 per day, about a 2 hour limit

Stages of Inspection —
Inspection Report

Moderator produces report shortly after
meeting

- List of defects, types, and severity

Use this report to update checklist to be used
in future inspections

- List main types of errors commonly found

- No more than 1 page total length
Collect data on time spent and number of
errors

- Helps evaluate how well things work, justify effort

Stages of Inspection — Stages of Inspection —

Rework Follow-Up
* Moderator assigns defects to someone * Moderator verifies that work assigned
to repair was carried out.
- Usually the author * Depending on number and severity of

errors, could take different forms:
- Just check with author that they were fixed
- Have reviewers check over the fixes
- Start cycle over again

Adjusting Inspections Over .
. Inspections and Human Egos
Time o
o _ o * Point is to improve code
: Organlzatlc_)ns will have characteristics - Not debate alternative implementations
of code unique to them - Not discuss who is wrong/right
- Density of code determines how fast - Moderator needs to control discussion
reviewers and inspection meeting can go * Author needs to be able to take criticism of
(application tends to be faster than system code
code/design) - May have things mentioned that aren’t “really”
- Checklists highlight common problems errors _ _
- Measure effect of any changes - D.ontdebate and defenq work during r(.ewew
. * Reviewers need to realize the code is not
- Evaluate whether they actually improved “theirs”

rocess . .
P - Up to author (or someone else) to determine fix

Walkthroughs

Alternative to formal code inspection

Vague term, many interpretations
- Less formal than inspections, though

Usually hosted and moderated by author

Chance for senior and junior programmers to
mix

Like inspection:

- Preparation required

- Focus on technical issues

- Goal is detection, not correction

- No management

Code Reading

Alternative to inspections and
walkthroughs

Author gives out code to two or more
reviewers

They read independently

Meeting held for everyone

- Reviewers present what they’ve found, but
don’t do a code walkthrough

Walkthrough Evaluation

In best cases, can match formal code
inspections in quality

In worst cases, can lower productivity,
eating more time than saved

Can work well for large groups

Can work well when bringing in
“outsiders”

Code Reading Evaluation

Most errors tend to be found in
individual review
- Reduces effort and overhead of managing
group dynamics at inspection meeting
- Maximizes productive effort per person —
time not wasted in meetings where others
are speaking
Works well for geographically
distributed reviewers

Pair Programming

* Basic idea: One person codes with another
looking over the shoulder.

* Person at keyboard writes code
* Second person is active participant

- Watch for errors

- Think strategically about code
° What's next?
° Is code meeting overall goal/design?
* How to test this code

Evaluating Pair Programming

Seems to achieve quality level similar
to formal inspection

Tends to decrease development time
- Code written faster, fewer errors

Tends to be higher quality code

- Holds up better during crunch time — fewer

shortcuts taken that come back to haunt
All the traditional collaborative benefits

Successful Pair Programming

* Standardize coding style
* Don’t force pairs for easy tasks
* Rotate pairs and work assignments

frequently

* Use “good” matches

- Avoid personality conflicts
- Avoid major differences in speed/experience

* Set up good work environment

* At least one pair member should be
experienced

