
Communicating in Code:
Commenting

315 Programming Studio

Note: several examples in this lecture taken from The Practice of Programming by Kernighan and Pike

Comments

 An internal documentation mechanism
− Documentation of the code stays with and close

to the code
 Comments should complement good coding

style, not replace it
− The better written your code, the fewer comments

you will need
 Poor commenting is a waste of time and

sometimes harmful.

What Comments are Not

 Design documents

What Comments are Not

 Design documents
 API references

What Comments are Not

 Design documents
 API references
 Specifications

What Comments are Not

 Design documents
 API references
 Specifications
 Padding to increase your “lines of

code”

What Comments are Not

 Design documents
 API references
 Specifications
 Padding to increase your “lines of

code”
 Places to tell jokes to future

programmers

Types of Comments

 Repeat of the Code
− Repeating what code does or stating the

obvious is useless
//loop through all Teams

for(i=0;i<NumTeams;i++)

 //add that team’s players to total

 TotalPlayers += Team[i].NumPlayers;

Types of Comments

 Repeat of the Code
− Repeating what code does or stating the

obvious is useless
//Find total number of players in league

for(i=0;i<NumTeams;i++)

 TotalPlayers += Team[i].NumPlayers;

Types of Comments

 Explanation of the code
− Can be a sign that the code is difficult to

understand
− Don’t comment bad code – rewrite it
− If the explanation is too long, code should be

rewritten

/* Update the attenuation due to multiple scattering
 whenever there is a valid layer hit. The next

intersection layer hit will be skipped over and the
intersection point will generate a new vector and the last
vector created will be stored */

for(i=IntersectLayer-1;i<NumLayersHit;i++) {
 if (isValidHit(r)) {
 Attenuation.Update(Layer[i+

+].HitPoint(genVector(r)));
 }
}

Types of Comments

 Marker in the Code
− Used as notes to the developer

//***** FIX THIS ROUTINE
 Often have key phrases to search on

− Used to visually separate code blocks
 As a style element, e.g. function header

blocks

Types of Comments

 Summary of the code
− Short statement summarizing several lines

of code.
− Useful for quick scanning over code to find

areas where things are happening
− Provides a global “map” to the code

Types of Comments

 Description of the code’s intent
− Best type – explains the why, not the how
− Comments should add something that is

not immediately evident from the code
− Understanding the intent of code is usually

the issue – it’s much easier to tell exactly
what the code is doing.

Things to Comment

 Functions
 Global variables

− Can be tough to keep track of
 Code that is truly complicated

− Might require lots of explanation,
references to algorithms

Maintaining Comments

 Comments need to be maintained as
code is edited!

− Conflicts between comments and code
cause tremendous difficulty

− Commenting styles can assist with
maintenance

/*************************/
/* */
/* My comments */
/* */
/*************************/

Maintaining Comments

 Comments need to be maintained as
code is edited!

− Conflicts between comments and code
cause tremendous difficulty

− Commenting styles can assist with
maintenance

/*************************
 * *
 * My comments *
 * *
 *************************/

Maintaining Comments

 Comments need to be maintained as
code is edited!

− Conflicts between comments and code
cause tremendous difficulty

− Commenting styles can assist with
maintenance

/************************
 *
 * My comments
 *
 ************************/

Maintaining Comments

 Comments need to be maintained as
code is edited!

− Conflicts between comments and code
cause tremendous difficulty

− Commenting styles can assist with
maintenance

/************************

 My comments

 ************************/

Maintaining Comments

 Comments need to be maintained as
code is edited!

− Conflicts between comments and code
cause tremendous difficulty

− Commenting styles can assist with
maintenance

 Blocks of comments
 Lining up comments

Maintaining Comments

 Difficulty lining up comments:
int Capacity; // Number of cats we could keep

int NumCats; // Number of cats in the house

float CatFood; // Monthly cost of cat food

Maintaining Comments

 Difficulty lining up comments:
int Capacity; // Number of cats we could keep

int NumCats; // Number of cats in the house

float CatFood; // Monthly cost of cat food

float BoardingCosts; // Cost to board cats per day

Maintaining Comments

 Difficulty lining up comments:
− Difficult to maintain over time, so tend to

degrade with modification
− Leaving enough space often leads to short

comments

Maintaining Comments

 Comments often last
− Don’t use comments you don’t want

others to see
− Don’t expect comments to really be

“temporary”
− If markers are left in code, be sure they

will be found

More Commenting “DON’Ts”

 Don’t include useless comments

MOV AX, 723h ; R.I.P.L.V.B

More Commenting “DON’Ts”

 Don’t include useless comments

MOV AX, 723h ; R.I.P.L.V.B

(Beethoven died in 1827 =
723h)

More Commenting “DON’Ts”

 Don’t include useless comments
 Avoid endline comments

− For one line of code, tend to be repetitive
 not much to say about one line of code

− For multiple lines of code, tend to be
difficult to match

 Which lines does the comment “belong” to?
− Difficult to say too much

 Not much room

More Commenting “DON’Ts”

 Don’t include useless comments
 Avoid endline comments
 Don’t use too many comments

− Can actually obscure the code itself!
− No set “ideal”, but one comment about

every 10 lines or so is probably right.

Commenting “DOs”

 Write code at the level of intent
/* Check each character in “inputstring” until a dollar sign

is found or all characters have been checked */
done = false;
maxLen = inputString.length();
i = 0;
while (!done && (i<maxLen)) {
 if (inputString[i] == ‘$’) {
 done = true;
 }
 else {
 i++;
 }
}

Commenting “DOs”

 Write code at the level of intent
/* Find ‘$’ in inputString */

done = false;

maxLen = inputString.length();

i = 0;

while (!done && (i<maxLen)) {

 if (inputString[i] == ‘$’) {

 done = true;

 }

 else {

 i++;

 }

}

Commenting “DOs”

 Write code at the level of intent
/* Find the command-word terminator ($) */

done = false;

maxLen = inputString.length();

i = 0;

while (!done && (i<maxLen)) {

 if (inputString[i] == ‘$’) {

 done = true;

 }

 else {

 i++;

 }

}

Commenting “DOs”

 Write code at the level of intent
 Use comments to prepare the reader

for what is to follow
− May not understand why things are being

set up in one area for later use
− Comments should precede statements

they comment on.

Commenting “DOs”

 Write code at the level of intent
 Use comments to prepare the reader

for what is to follow
 Document surprises not obvious in the

code
for(element=0; element < elementCount; element++) {

 // Use right shift to divide by two. Substituting

 // right-shift operation cuts loop time by 75%

 elementList[element] = elementList[element] >> 1;

}

Commenting “DOs”

 Write code at the level of intent
 Use comments to prepare the reader

for what is to follow
 Document surprises not obvious in the

code
 Avd crypt stats. and abbr.

Commenting “DOs”

 Write code at the level of intent
 Use comments to prepare the reader

for what is to follow
 Document surprises not obvious in the

code
 Avoid cryptic statements and

abbreviations

Commenting “DOs”

 Write code at the level of intent
 Use comments to prepare the reader for

what is to follow
 Document surprises not obvious in the code
 Avoid cryptic statements and abbreviations
 Comment about anything that is used to

avoid an error or an undocumented feature
− Prevents that code from being accidentally

deleted!

Other Commenting
Suggestions

 Comment units for numeric data
 Comment ranges of allowable values
 Comment limitations on input data
 Document flags to the bit level
 Be sure comments stay associated

with what they comment
− avoid separating comments about a

variable from the variable

Commenting Control
Structures

 Comments before loops and large
blocks are natural

 Comment to identify the end of control
structures, especially when end is far
separated from beginning

Commenting Functions

 Input required
− Restrictions/ranges

 Output produced
 Side effects and global effects
 Limitations of the routine
 Sources for algorithms implemented

