315 Programming Studio

What Comments are Not

* Design documents

Comments

An internal documentation mechanism

- Documentation of the code stays with and close
to the code

Comments should complement good coding
style, not replace it

- The better written your code, the fewer comments
you will need

Poor commenting is a waste of time and
sometimes harmful.

What Comments are Not

Design documents
API references

What Comments are Not

Design documents

* API references

Specifications

What Comments are Not

Design documents
API references
Specifications

Padding to increase your “lines of
code”

Places to tell jokes to future
programmers

What Comments are Not

Design documents
API references
Specifications

Padding to increase your “lines of
code”

Types of Comments

* Repeat of the Code

- Repeating what code does or stating the

obvious is useless
//1loop through all Teams
for(i=0;i<NumTeams;i++)
//add that team’s players to total
TotalPlayers += Team[i].NumPlayers;

Types of Comments Types of Comments

* Repeat of the Code * Explanation of the code
]) - Can be a sign that the code is difficult to
- Repeating what code does or stating the understand
obvious is useless - Don’t comment bad code — rewrite it
- If the explanation is too long, code should be
for(i=0;i<NumTeams;i++) rewritten

TotalPlayers += Team[i].NumPlayers; /* Update the attenuation due to multiple scattering

whenever there is a valid layer hit. The next
intersection layer hit will be skipped over and the
intersection point will generate a new vector and the last
vector created will be stored */
for(i=IntersectLayer-1;i<NumLayersHit;i++) {
if (isvalidHit(r)) {

Attenuation.Update(Layer[i+

+].HitPoint(genVector(r)));

}
}
Types of Comments Types of Comments
* Marker in the Code * Summary of the code
- Used as notes to the developer - Short statement summarizing several lines
//***** FIX THIS ROUTINE of code.
- Often have key phrases to search on - Useful for quick scanning over code to find

- Used to visually separate code blocks areas where things are happening
* As a style element, e.g. function header - Provides a global “map” to the code

blocks

Types of Comments

* Description of the code’s intent

- Best type — explains the why, not the how

- Comments should add something that is
not immediately evident from the code

- Understanding the intent of code is usually
the issue — it's much easier to tell exactly

what the code is doing.

Maintaining Comments

* Comments need to be maintained as
code is edited!

- Conflicts between comments and code
cause tremendous difficulty

- Commenting styles can assist with
maintenance
/*************************/
/* */
/* My comments */
/* */

/*************************/

Things to Comment

* Functions

* Global variables
- Can be tough to keep track of

* Code that is truly complicated

- Might require lots of explanation,
references to algorithms

Maintaining Comments

* Comments need to be maintained as
code is edited!

- Conflicts between comments and code
cause tremendous difficulty

- Commenting styles can assist with
maintenance

/*************************
* *
* My comments *
* *

*************************/

Maintaining Comments Maintaining Comments

* Comments need to be maintained as * Comments need to be maintained as
code is edited! code is edited!
- Conflicts between comments and code - Conflicts between comments and code
cause tremendous difficulty cause tremendous difficulty
- Commenting styles can assist with - Commenting styles can assist with
maintenance maintenance
Maintaining Comments Maintaining Comments
* Comments need to be maintained as * Difficulty lining up comments:
COde iS edited| int Capacity; // Number of cats we could keep
]) int NumCats; // Number of cats in the house
- Conflicts between comments and code float CatFood; // Monthly cost of cat food

cause tremendous difficulty
- Commenting styles can assist with
maintenance
* Blocks of comments
* Lining up comments

Maintaining Comments Maintaining Comments

* Difficulty lining up comments: * Difficulty lining up comments:
int Capacity; // Number of cats we could keep - Difficult to maintain over time, so tend to
int NumCats; // Number of cats in the house] . . !
float CatFood; // Monthly cost of cat food degrade with modification
float BoardingCosts; // Cost to board cats per day - Leaving enough space often leads to short
comments
Maintaining Comments More Commenting “DON’'TS”
* Comments often last * Don’t include useless comments
- Don’t use comments you don’t want MOV AX, 723h ; R.I.P.L.V.B

others to see

- Don’t expect comments to really be
“temporary”

- If markers are left in code, be sure they
will be found

More Commenting “DON'Ts”

* Don’t include useless comments
MOV AX, 723h ; R.I.P.L.V.B

(Beethoven died in 1827 =
723h)

More Commenting “DON’'Ts”

* Don’t include useless comments
* Avoid endline comments

* Don’t use too many comments
- Can actually obscure the code itself!

- No set “ideal”, but one comment about
every 10 lines or so is probably right.

More Commenting “DON'Ts”

* Don’t include useless comments

* Avoid endline comments

- For one line of code, tend to be repetitive
* not much to say about one line of code

- For multiple lines of code, tend to be

difficult to match

* Which lines does the comment “belong” to?

- Difficult to say too much
* Not much room

Commenting “DOs”

* Write code at the level of intent

/* Check each character in “inputstring” until a dollar sign
is found or all characters have been checked */

done = false;

maxLen = inputString.length();

i=o0;
while (!done && (i<maxLen)) {
if (inputString[i] == ‘$’) {
done = true;
}
else {

i++;
}
}

Commenting “DOs”

* Write code at the level of intent
/* Find ‘$’ in inputString */

done = false;

maxLen = inputString.length();

i=0;
while (!done && (i<maxLen)) {
if (inputString[i] == ‘$’) {
done = true;
}
else {
i++;
}

Commenting “DOs”

* Write code at the level of intent

* Use comments to prepare the reader

for what is to follow

- May not understand why things are being

set up in one area for later use

- Comments should precede statements

they comment on.

Commenting “DOs”

* Write code at the level of intent

/* Find the command-word terminator ($) */
done = false;
maxLen = inputString.length();
i=0;
while (!done && (i<maxLen)) {
if (inputString[i] == ‘$’) {
done = true;

}
else {
i++;

}

Commenting “DOs”

* Write code at the level of intent

* Use comments to prepare the reader
for what is to follow

* Document surprises not obvious in the
code

for(element=0; element < elementCount; element++) {
// Use right shift to divide by two. Substituting
// right-shift operation cuts loop time by 75%
elementList[element] = elementList[element] >> 1;

Commenting “DOs”

Write code at the level of intent

Use comments to prepare the reader
for what is to follow

Document surprises not obvious in the
code

Avd crypt stats. and abbr.

Commenting “DOs”

Write code at the level of intent

Use comments to prepare the reader for
what is to follow

Document surprises not obvious in the code
Avoid cryptic statements and abbreviations

Comment about anything that is used to
avoid an error or an undocumented feature

- Prevents that code from being accidentally
deleted!

Commenting “DOs”

Write code at the level of intent

Use comments to prepare the reader
for what is to follow

Document surprises not obvious in the
code

Avoid cryptic statements and
abbreviations

Other Commenting
Suggestions

Comment units for numeric data
Comment ranges of allowable values
Comment limitations on input data
Document flags to the bit level

Be sure comments stay associated
with what they comment

- avoid separating comments about a
variable from the variable

Commenting Control Commenting Functions

Structures
* Comments before loops and large * Input required
blocks are natural - Restrictions/ranges

* Comment to identify the end of control
structures, especially when end is far
separated from beginning

Output produced

Side effects and global effects
Limitations of the routine

Sources for algorithms implemented

