
Slide05

Haykin Chapter 5: Radial-Basis

Function Networks
CPSC 636-600

Instructor: Yoonsuck Choe

Spring 2012

1

Learning in MLP

• Supervised learning in multilayer perceptrons:

– Recursive technique of stochastic approximation, e.g.,

backprop.

– Design of nnet as a curve-fitting (approximation) problem,

e.g., RBF.

• Curve-fitting:

– Finding a surface in a multidimensional space that provides a

best fit to the training data.

– “Best fit” measured in a certain statistical sense.

– RBF is an example: hidden neurons forming an arbitrary

basis for the input patterns when they are expanded into the

hidden space. These basis are called radial basis functions.
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Radial-Basis Function Networks
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Three layers:

• Input

• Hidden: nonlinear transformation from input to hidden space.

• Output: linear activation.

Principal motivation: Cover’s theorem—pattern classifiction casted in

high-dimensional space is more likely to be linearly separable than in

low-dimensional space.
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Cover’s Theorem

Cover’s theorem on the separability of patterns:

A complex pattern-classification problem cast in a

high-dimensional space nonlinearly is more likely to be

linearly separable than in a low-dimensional space.

Basic idea: nonlinearly map points in the input space to a hidden

space that has a higher dimension than the input space. Once the

proper mapping is done, simple, quick algorithms can be used to find

the separating hyperplane.
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φ-Separability of Patterns
• N input patternsX = {x1,x2, ...,xN} inm0-dimensional space.

• The inputs belong to either of two setsX1 andX2 : they form a dichotomy.

• The dichotomy is separable wrt a family of surfaces if a surface exists in

the family that separates the points in classX1 fromX2 .

• For each x ∈ X , define anm1-vector {φi(x)|i = 1, 2, ...,m1}:

φ(x) = [φ1(x), φ2(x), ..., φm1 (x)]
T

that maps inputs inm0-D space to the hidden space ofm1-D. φi(x)

are called the hidden functions, and the space spanned by these functions

is called the hidden space or feature space.

• A dichotomy is φ-separable if there exists anm1-D vector w such that:

w
T

φ(x) > 0, x ∈ X1

w
T

φ(x) < 0, x ∈ X2

with separating hyperplane wTφ(x) = 0.
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Cover’s Theorem Revisited

• Given a set X ofN inputs picked from the input space

independently, and suppose all the possible dichotomies of X are

equiprobable.

• Let P (N,m1) denote the probability that a particular dichotomy

picked at random is φ-separable, where the family of surfaces has

m1 degrees of freedom.

• In this case,

P (N,m1) =

„
1

2

«N−1 m1−1X
m=0

 
N − 1

m

!
where  

l

m

!
=
l(l− 1)(l− 2)...(l−m+ 1)

m!
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Cover’s Theorem: Interpretation

• Separability depends on: (1) particular dichotomy, and (2) the

distribution of patterns in the input space.

• The derived P (N,m1) states that the probability of being

φ-separable is equivalent to the cumulative binomial distribution

corresponding to the probability that (N − 1) flips of a fair coin

will result in (m1 − 1) or fewer heads.

• In sum, Cover’s theorem has two basic ingredients:

– Nonlinear mapping to hidden space with φi(x)

(i = 1, 2, ..,m1).

– High dimensionality of hidden space compared to the input

space (m1 > m0).

• Corollary: A maximum of 2m1 patterns can be linearly separated

by a hidden space ofm1-D.
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Example: XOR (again!)

• With Gaussian hidden functions, the inputs become linearly

separable in the hidden space:

φ1(x) = exp(−‖x− t1‖2), t1 = [1, 1]T

φ2(x) = exp(−‖x− t2‖2), t2 = [0, 0]T

8



2D Gaussian

exp(-(x*x+y*y))
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Basically, ti determines the center of the 2D Gaussian,

φi(x) = exp(−‖x− ti‖2)

and points x that are equidistance from the center have the same φ

value.
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RBF Learning: Overview
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The RBF learning problem boils down to two tasks:

1. How to determine the parameters associated with the radial-basis

functions in the hidden layer φi(x) (e.g., the center of the

Gaussians).

2. How to train the hidden-to-output weights?: This part is relatively

easy.
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RBF as an Interpolation Problem
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• m0-D input to 1-D output mapping s : Rm0 → R1 .

• The map s can be thought of as a hypersurface Γ ⊂ Rm0+1 .

– Training: fit hypersurface Γ to the training data points.

– Generalization: interpolate between data points, along the

reconstructed surface Γ.

• Given {xi ∈ Rm0 |i = 1, 2, ..., N} andN labels

{di ∈ R1|i = 1, 2, ..., N}, find F : RN → R1 such that

F (xi) = di forall i.
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RBF and Interpolation

• Interpolation is formulated as

F (x) =

NX
i=1

wiφ(‖x− xi‖),

where {φ(‖x− xi‖)|i = 1, 2, ..., N} is a set ofN arbitrary

(nonlinear) functions known as radial-basis functions.

• The known data points xi ∈ Rm0 , i = 1, 2, ..., N are treated

as the centers of the RBFs. (Note that in this case, all input data

need to be memorized, as in instance-based learning, but this is

not a necessary requirement.)
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RBF and Interpolation (cont’d)

F (x) =

NX
i=1

wiφ(‖x− xi‖),

• So, we haveN inputs andN hidden units, and one output unit.

Expressing everything (allN input-output pairs) in matrix form:26666664
φ11 φ12 · · · φ1N

φ21 φ22 · · · φ2N

.

.

.
.
.
.

.

.

.
.
.
.

φN1 φN2 · · · φNN

37777775

26666664
w1

w2

.

.

.

wN

37777775 =

26666664
d1

d2

.

.

.

dN

37777775 ,

where φji = φ(‖ xj|{z}
Input

− xi|{z}
Center

‖2). We can abbreviate the

above as:

φw = d.
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RBF and Interpolation (cont’d)

• From φw = d, we can find an explicit solution w:

w = φ−1d,

assuming φ is nonsingular.

(Note: in general, the number of hidden units is much less than

the number of inputs, so we don’t always have φ as a square

matrix! We’ll see how to handle this, later.)

• Nonsingularity of φ is guaranteed by Micchelli’s theorem:

Let {xi}Ni=1 be a set of distinct points in Rm0 . Then

theN -by-N interpolation matrix φ, whose ji-th element

is φji = φ(‖xj − xi‖), is nonsingular.
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RBF and Interpolation (cont’d)

• Whenm0 < N (m0: number of hidden units;N : number of

inputs), we can findw that minimizes

E(w) =

NX
i=1

(F (xi)− di)2 ,

where F (x) =
Pm0
k=1 wkφk(x).

• The solution involves the pseudo inverse of φ:

w =
“
φTφ

”−1
φT| {z }

pseudo inverse

d.

Note: φ is anN ×m0 rectangular matrix.

• In this case, how to determine the centers of the φk(·) functions

becomes an issue.
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Typical RBFs

For some c > 0, σ > 0, and r ∈ R.

• Multiquadrics (non-local):

φ(r) = (r2 + c2)1/2

• Inverse multiquadrics (local):

φ(r) =
1

(r2 + c2)1/2

• Gaussian functions (local):

φ(r) = exp

„
− r2

2σ2

«
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Other Perspectives on RBF Learning

• RBF learning is formularized as

F (x) =

m0X
k=1

wkφk(x).

• This kind of expression was given without much rationale, other

than intuitive appeal.

• However, there’s one way to derive the above formalism based on

an interesting theoretical point-of-view, which we will see next.
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Supervised Learning as Ill-Posed Hypersurface

Reconstruction Problem

• The exact interpolation approach has limitations:

– Poor generalization: data points being more numerous than

the degree of freedom of the underlying process can lead to

overfitting.

• How to overcome this issue?

– Approach the problem from a perspective that learning is a

hypersurface reconstruction problem given a sparse set of

data points.

– Contrast between direct problem (in many cases well-posed)

vs. inverse problem (in many cases ill-posed).
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Well-Posed Problems in Reconstructing Functional

Mapping

Given an unknown mapping from domainX to rangeY , we want to reconstruct

the mapping f . This mapping is well-posed if all the following conditions are

satisfied:

• Existence: For all x ∈ X , there exist an output y ∈ Y such that

y = f(x).

• Uniqueness: For all x, t ∈ X , f(x) = f(t) iff x = t.

• Continuity: The mapping is continuous.

For any ε > 0 there exists δ = δ(ε) such that

ρx(x, t) < δ → ρy(f(x), f(t)) < ε, where ρ(·, ·) is the

distance measure.

If any of these conditions are violated, the problem is called an ill-posed problem.
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Ill-Posed Problems and Solutions

• Direct (causal) mapping are generally well-posed (e.g., 3D object

to 2D projection).

• On the other hand, inverse problems are ill-posed (e.g.,

reconstructing 3D structure from 2D projections).

• For ill-posed problems, solutions are not unique (can in many

cases they can be infinite): We need prior knowledge (or some

kind of preference) to narrow down the range of solutions (this is

called regularization).

Treating supervised learning as an ill-posed problem, and using certain

prior knowledge, we can derive the RBF formalism.
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Regularization Theory: Overview

• The main idea behind regularization is to stabilize the solution by

means of prior information.

• This is done by including a functional (a function that maps from

a function to a scalar) in the cost function, so that the functional

can also be minimized. Only a small number of candidate

solutions will minimize this functional.

• These functional terms are called the regularization term.

• Typically, the functionals measure the smoothness of the

function.
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Tikonov’s Regularization Theory

• Task: Given input xi ∈ Rm0 and target di ∈ R1 , find F (x).

• Minimize the sum of two terms:

1. Standard error term:

Es(F ) =
1

2

NX
i=1

(di − yi)2 =
1

2

NX
i=1

(di − F (xi))
2
.

2. Regularization term:

Ec(F ) =
1

2
‖DF‖2,

where D is a linear differential operator, and ‖ · ‖ the norm of the

function space.

• Putting these together, we want to minimize (w/ regularization param. λ)

E(F ) = Es(F )+λEc(F ) =
1

2

NX
i=1

(di−F (xi))
2
+

1

2
λ‖DF‖2.
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Error Term vs. Regularization Term

-0.5

 0

 0.5

 1

 1.5

 2

 0  1  2  3  4  5  6  7

data
fit

-0.5

 0

 0.5

 1

 1.5

 2

 0  1  2  3  4  5  6  7

data
fit

 0

 0.5

 1

 1.5

 2

 2.5

 0  1  2  3  4  5  6  7

data
fit

 0.9955

 0.996

 0.9965

 0.997

 0.9975

 0.998

 0.9985

 0.999

 0.9995

 1

 0  1  2  3  4  5  6  7

RBFs

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  1  2  3  4  5  6  7

RBFs

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4  5  6  7

RBFs

Error Regularization

Left Bad fit Extremely smooth

Middle Good fit Smooth

Right Over fit Jagged

Try this demo: http://lcn.epfl.ch/tutorial/english/rbf/html/.
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Solution that Minimizes E(F )

• Problem: minimize

E(F ) = Es(F )+λEc(F ) =
1

2

NX
i=1

(di−F (xi))
2+

1

2
λ‖DF‖2.

• Solution: Fλ(x) that satisfies the Euler-Lagrange equation

(below) minimizes E(F ).

eDDFλ(x)− 1

λ
[di − F (xi)] δ(x− xi) = 0,

where eD is the adjoint operator of D and δ(·) is the Dirac delta

function.
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Solution that Minimizes E(F ) (cont’d)

• The solution to the Euler-Lagrange equation can be formulated in

terms of the Green’s function that satisfies:

eDDG(x,x′) = δ(x,x′).

Note: the form ofG(·, ·) depends on the particular choice of D.

• Finally, the desired function Fλ(x) that minimizes E(F ) is:

Fλ(x) =
1

λ

NX
i=1

[di − F (xi)]G(x,xi).
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Solution that Minimizes E(F ) (cont’d)

• Letting

wi =
1

λ
[di − F (xi)], i = 1, 2, ...N

we can recast Fλ(x) as

Fλ(x) =
NX
i=1

wiG(x,xi).

• Plugging in input xj , we get

Fλ(xj) =
NX
i=1

wiG(xj ,xi).

• Note the similarity to the RBF:

F (x) =
NX
i=1

wiφ(‖x− xi‖)
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Solution that Minimizes E(F ) (cont’d)

We can use a matrix notation:

Fλ = [Fλ(x1), Fλ(x1), ...Fλ(xN )]T

d = [d1, d2, ..., dN ]T

G =

26666664
G(x1,x1) G(x1,x2) · · · G(x1,xN )

G(x2,x1) G(x2,x2) · · · G(x2,xN )

.

.

.
.
.
.

.

.

.
.
.
.

G(xN ,x1) G(xN ,x2) · · · G(xN ,xN )

37777775
w = [w1, w2, ..., wN ]T .

Then we can rewrite the formula in the previous page as w = 1
λ (d− Fλ),

and Fλ = Gw.
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Solution that Minimizes E(F ) (cont’d)

• Combining

w =
1

λ
(d− Fλ)

Fλ = Gw

we can eliminate Fλ to get

(G + λI)w = d.

• From this, we can get the weights:

w = (G + λI)−1d

if G + λI is invertible (it needs to be positive definite, which can

be ensured by a large λ).

Note: G(xi,xj) = G(xj ,xi), thus GT = G.
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Solution that Minimizes E(F ) (cont’d)

Steps to follow:

1. Determine D.

2. Find the Green’s function matrix G associated with D.

3. Obtain the weights by

w = (G + λI)−1d

For certain Ds, the corresponding Green’s functions are Gaussian,

inverse multiquadrics, etc. Thus, the whole approach is similar to RBF.

(More on this later.)
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Regularization Theory and RBF

• In conclusion, the regularization problem’s solution is given by the

expansion:

Fλ(x) =
NX
i=1

wiG(x,xi),

whereG(·, ·) is the Green’s function for the self-adjoint operator eDD.

• When the stabilizer D has certain properties, the resulting Green’s

functionG(·, ·) become radial basis functions:

– D is translationally invariant:

G(x,xi) = G(x− xi).

– D is translationally and rotationally invariant:

G(x,xi) = G(‖x− xi‖),

which is a RBF!
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Translationally and Rotationally Invariant D

• One example of a Green’s function that corresponds to a

translationally and rotationally invariant D is the multivariate

Gaussian function:

G(x,xi) = exp

„
− 1

2σ2
i

‖x− xi‖2
«
.

• With this, the regularized solution becomes

Fλ(x) =

NX
i=1

wi exp

„
− 1

2σ2
i

‖x− xi‖2
«
.

This function is known to be a universal approximator.
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Regularization Networks
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• The regularized solution

Fλ(x) =
NX
i=1

wi exp

„
− 1

2σ2
i

‖x− xi‖2
«

can be represented as a network.

– Hidden unit i computesG(x,xi) (one hidden unit per input pattern).

– Output unit is linear weighted sum of hidden unit activation.

• Problem: we needN hidden units forN input patterns, which can be

excessive for large input sets.

32



Desirable Properties of Regularization Networks

• The regularization network is a universal approximator, that can

approximate any multivariate continuous function arbitrarily well,

given sufficiently large number of hidden units.

• The approximation shows the best approximation property (best

coefficients will be found).

• The solution is optimal: it will minimize the cost functional E(F).
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Generalized Radial-Basis Function Networks
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• Regularization networks can be computationally demanding whenN is

huge. Generalized RBF overcomes this problem.

F
∗
(x) =

m1X
i=1

wiφi(x),

wherem1 < N , and φi(x) = G(‖x− ti‖), so that

F
∗
(x) =

m1X
i=1

wiG(‖x− ti‖).
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Generalized Radial-Basis Function Networks (cont’d)

• To find the weightswi , we minimize

E(F
∗
) =

NX
i=1

 
di −

m1X
i=1

wiG(‖x− ti‖)
!2

+ λ‖DF∗‖2

• Minimization of E(F∗) yields

(G
T

G + λG0)w = G
T

d, where

G0 =

26666664
G(t1, t1) G(t1, t2) · · ·G(t1, tm1 )

G(t2, t1) G(t2, t2) · · ·G(t2, tm1 )

.

.

.
.
.
.

.

.

.
.
.
.

G(tm1 , t1) G(tm1 , t2) · · ·G(tm1 , tm1

37777775 .

• As λ approaches 0, we get GTGw = GTd, so,

w = (G
T

G)
−1

G
T

d = G
+

d.
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Weighted Norm

• When individual input lines in the input vector x are from different

classes, a weighted norm can be used.

‖x‖2C = (Cx)T (Cx) = xTCTCx

• The approximation function can be rewritten as

F ∗(x) =

m1X
i=1

wiG(‖x− ti‖C).

• For Gaussian RBF, it can be interpreted as

G(‖x− ti‖C) = exp
`−(x− ti)

TCTC(x− ti)
´

= exp
`− 1

2
(x− ti)

TΣ−1(x− ti)
´
,

where ti represents the mean vector and Σ the covariance

matrix of a multivariate Gaussian function.
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Regularization Networks vs. Generalized RBF
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• Hidden layer in GRBF is much smaller: m1 < N .

• In GRBF, (1) the weights, (2) the RBF centers ti , and (3) the norm

weighting matrix are all unknown parameters to be determined.

• In regularization networks, RBF centers are known (same as all the inputs),

and only the weights need to be determined.
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Estimating the Parameters

• Weightswi: already discussed (more next).

• Regularization parameter λ:

– Minimize averaged squared error.

– Use generalized cross-validation.

• RBF centers:

– Randomly select fixed centers.

– Self-organized selection.

– Supervised selection.

38

Estimating the Regularization Parameter λ

• Minimize average squared error: For a fixed λ, for allN inputs,

calculate the squared error betwen the true function value and the

estimated RBF network output using the λ. Find the optimal λ

that minimizes this error. Problem: This requires knowledge of the

true function values.

• Generalized cross-validation: Use leave-one-out cross

validation. With a fixed λ, for allN inputs, find the difference

between the target value (from the training set) and the predicted

value from the leave-one-out-trained network. This approach

depend only on the training set.
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RBF Learning
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Basic idea is to learn in two different time scales:

• Nonlinear, slow learning of the RBF parameters (center,

variance).

• Linear, fast learning of the hidden-to-output weights.
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RBF Learning (1/3): Random Centers

• Usem1 hidden units:

G(‖x− ti‖) = exp

„
− m1

d2max
‖x− ti‖2

«
,

where ti(i = 1, 2, ...,m1) are picked by random from the available

inputs xj(j = 1, 2, ..., N).

• Note that the standard deviation (width) of the RBF is fixed to:

σ =
dmax√
2m1

,

where dmax is the max distance between the chosen centers ti . This

gives a width that is not too peaked nor too flat.

• The linear weights are learned using the pseudoinverse:

w = G
+

d = (G
T

G)
−1

G
T

d,

where the matrix G = {gji}, gji = G(‖xj − ti‖2).
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Finding G+ with Singular Value Decomposition

If for a realN ×M matrix G, there exists orthogonal matrices

U = [u1,u2, ...,uN ]

V = [v1,v2, ...,vM ], such that

UTGV = diag(σ1, σ2, ..., σK) = Σ, K = min(M,N),

then U is called the left singular matrix, V the right singular matrix,

and σ1, σ2, ..., σK the singular values of the matrix G.

Once these are known, we can obtain G+ as

G+ = VΣ+UT

where Σ+ = diag
“

1
σ1
, 1
σ2
, ... 1

σK

”
. There are efficient

algorithms for singular value decomposition that can be used for this.
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Finding G+ with Singular Value Decomposition

(cont’d)

Using these properties

U
−1

= U
T

V
−1

= V
T

ΣΣ
+

= I

we can verify that GG+ = I:

UTGV = Σ

UUTGVVT = UΣVT

G = UΣVT

GG+ = UΣVTVΣ+UT

= UΣΣ+UT

= UUT

= I.
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RBF Learning (2/3): Self-Organized Centers

The random-center approach is only effective with large input sets. To overcome

this, we can take a hybrid approach: (1) self-organized learning of centers, and

(2) supervised learning of linear weights.

Clustering for RBF center learning (similar to Self-Organizing Maps):

1. Initialization: Randomly choose distinct tk(0)s.

2. Sampling: Draw a random input vector x ∈ X .

3. Similarity matching: Find best-matching center vector tk(x) :

k(x) = arg min
k

‖x(n)− tk(n)‖

4. Updating: Update center vectors

tk(n+1) =

(
tk(n) + η[x(n)− tk(n)], if k = k(x)

tk(n), otherwise

5. Continuation: increment n and repeat from step 2.
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RBF Learning (3/3): Supervised Selection of Centers

Use error correction learning to adjust all RBF parameters to minimize the error

cost function:

E =
1

2

NX
j=1

e
2
j ,

ej = dj − F∗(xj) = dj −
MX
i=1

wiG(‖xj − ti‖Ci ).

• Linear weights (output layer): wi(n+ 1) = wi(n)− η1 ∂E(n)
∂wi(n) .

• Position of centers (hidden layer): ti(n+ 1) = ti(n)− η2 ∂E(n)
∂ti(n)

• Spread of centers (hidden layer):

Σ
−1
i (n+ 1) = Σ

−1
i (n)− η3

∂E(n)

∂Σ−1
i (n)
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RBF Learning (3/3): Supervised Selection of Centers

(cont’d)

• Linear weights

∂E(n)

∂wi(n)
=

NX
j=1

ej(n)G(‖xj − ti(n)‖Ci ).

• Position of centers

∂E(n)

∂ti(n)
= 2wi(n)

NX
j=1

ej(n)G′
“
‖xj − ti(n)‖Ci

”
Σ
−1
i

(n)
h
xj − ti(n)

i

• Spread of centers

∂E(n)

∂Σ−1
i (n)

= −wi(n)

NX
j=1

ej(n)G
′ `‖xj − ti(n)‖Ci

´
Qij(n),

Qji(n) = [xj − ti(n)][xj − ti(n)]
T
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Comparison of RBF and MLP

• RBF has a single hidden layer, while MLP can have many.

• In MLP, hidden and output neurons have the same underlying

function. In RBF, they are specialized into distinct functions.

• In RBF, the output layer is linear, but in MLP, all neurons are

nonlinear.

• The hidden neurons in RBF calculate the Euclidean norm of the

input vector and the center, while in MLP the inner product of the

input vector and the weight vector is calculated.

• MLPs construct global approximations to nonlinear input–output

mapping. RBF uses exponentially decaying localized

nonlinearities (e.g. Gaussians) to construct local approximations

to nonlinear input–output mappings.
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Summary

• RBF network is unusual due to its two different unit types: RBF

hidden layer, and linear output layer.

• RBF is derived in a principled manner, starting from Tikohonov’s

regularization theory, unlike MLP.

• In RBF, the smoothing term becomes important, with different D

giving rise to different Green’s functionG(·, ·).

• Generalized RBF lifts the requirement ofN hidden units forN

input patterns, greatly reducing the computational complexity.

• Proper estimation of the regularization parameter λ is needed.
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