Intelligent Systems Overview

e CSCE 181
e Yoonsuck Choe

e Neuroevolution slides are from Risto Miikkulainen’s
tutorial at the GECCO 2005 conference, with slight
editing.

What Is Intelligence?

e |t is a hard question to answer: Hard to define, and
hard to reach a consensus.

e How about “what sorts of things are intelligent?”
— Easier to answer: humans, chimps, etc.

— From here, we can look back and try to answer

the original question.

— What makes known intelligent beings intelligent?

No brain, no intelligence.

Artificial Intelligence (Al)

A broad field in computer science that studies the
phenomenon of intelligence.

e Automated reasoning, theorem proving

e Planning

e Machine learning

e Computer vision, Speech recognition

e Agents

e Robotics

e Natural language processing

e Gaming Al 2

Puzzling Aspects of Al

e We tend to think of things smart people do: logical
thinking, calculus, complex planning and
optimization.

e However, the history of Al is the history of
conquering of the seemingly hardest tasks first.

— Logical reasoning: earliest success in Al
— Calculus: symbolic math packages

— Chess: IBM’s Deep Blue

— Route planning optimization: GPS

— Jeopardy: IBM’s Watson
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Hard Tasks in Al Frontiers in Al

Rodney Brooks (MIT), on the 50th anniversary of Al in e Machine learning: How to make machines learn,
2006, proposed the following list: rather than humans explicitly programming them.

e the social sophisitication of 10-year-old Dealing with huge amounts of data.

e the manual dexterity of a 6-year-old e Robotics: To go where no human has gone before.
Autonomy.

e the language ability of 4-year-old

e Consciousness and subjective phenomena:

e the visual object recognition of a 2-year-old ohilosophical issues.

Al @ TAMU Today’s Main Topic

e Computational Neuroscience: Yoonsuck Choe e Neuroevolution: Evolve artificial neural networks to
e Robotics, Computer Vision, Motion Planning: Robin Murphy, control behavior of robots and agents.
Dylan Shell, Dez Song, Ricardo Gutierrez-Osuna, Nancy Amato

N . _ _ . e Main idea: Mimic the natural process of evolution
e Pattern Recognition, machine olfaction: Ricardo Gutierrez-Osuna
that gave rise to the brain, the source of intelligence.
e Bioinformatics: Tom loerger

— Population
e Sketch Recognition: Tracy Hammond
. . — Competition
o Human-Computer Interaction: Andruid Kerne, Frank Shipman
— Selection

o Sensor Networks: Radu Stoleru
— Reproduction and mutation



Why Neuroevolution?

Evolving Neural Networks

Risto Miikkulainen

Department of Computer Sciences

The University of Texas at Austin

http://www.cs.utexas.edu/users/risto
e Neural networks already successful in many domains.

e However, in certain domains, it is hard to fit the existing framework

and learning algorithms.

e Hard domains: fin-less rocket control, robotic agent control, etc.
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Outline Neuroevolution Decision Strategies
Basic neuroevolution techniques e Input variables describe the state
Advanced techniques e Output variables describe actions
, Output units
— E.g. combining learning and evolution ® Network between input and output lefi  Right  Forward
— Hidden nodes .
Extensions to applications — Weighted connections
Application examples e Execution: -
. R — Numerical activation of input 4 & © n F 1 2 3 4 5 f \Bw
LTINO S B - b il Tere

Input units

e Performs a nonlinear mapping
— Memory in recurrent connections

e Connection weights and structure evolved
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Neuroevolution Basics
NEURAL NEWORK
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e A single chromosome encodes a full neural network.

e Each gene, a single bit (or a real number), maps to a

connection weight in the neural network.
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Neuroevolution Basics: Cross-Over in Detail
CROSS-0OVER

PARENTS OFFSPRINGS

cross—over point
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e Cross-over of two individuals produces two offsprings with
a mixed heritage.
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Neuroevolution Basics: Operations
CROSS-OVER

PARENTS

cross—over point

e Cross-over.

e Mutation.

>

OFFSPRINGS

MUTATION

R o~ (A - A
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Conventional Neuroevolution (CNE)

Genetic
/(/,5 Algorithm

&

%, &

e Evolving connection weights in a population of networks

fitness

observation

action

N;um\ Network

e Chromosomes are strings of weights (bits or real)
- E.g. 10010110101100101111001
— Usually fully connected, fixed topology

— Initially random
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Conventional Neuroevolution (2)

fitness

Genetic™_ .
2 Algorithrmn '\
&

observation

N;uru\ Network

e Each NN evaluated in the task
— Good NN reproduce through crossover, mutation

— Bad thrown away

— Over time, NNs evolve that solve the task

e Natural mapping between genotype and phenotype

e GA and NN are a good matchy,

Advanced NE 1: Evolving Neurons

observation

e Evolving individual neurons to cooperate in networks

(Agogino GECCO’05)

.
Recurrent
Neural Network

e E.g. Enforced Sub-Populations (ESP?)
— Each (hidden) neuron in a separate subpopulation
— Fully connected; weights of each neuron evolved
— Populations learn compatible subtasks
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action

1,22,24

Problems with CNE

fitness

Genetic™_ .
2 Algorthm N
£ &

observation

Neural Network

e Evolution converges the population (as usual with EAs)
— Diversity is lost; progress stagnates

e Competing conventions
— Different, incompatible encodings for the same solution

e Too many parameters to be optimized simultaneously
— Thousands of weight value1§ at once

Advanced NE 2: Evol. Subpopulations

Generation 20

L

Generation 50 Generation 100

e Evolution encourages diversity automatically
— Good networks require different kinds of neurons

e Evolution discourages competing conventions
— Neurons optimized for compatible roles

e large search space divided into subtasks
— Optimize compatible neurons
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Advanced NE 3: Evolving Topologies

- s e oy - L s

11,40

e Optimizing connection weights and network topology

E.g. Neuroevolution of Augmenting Topologies (NEAT %"%)

Based on Complexification

Of networks:
— Mutations to add nodes and connections

Of behavior:
— Elaborates on earlier berzl?viors

How Can Crossover be Implemented?

e Problem: Structures do not match

A<\

e Solution: Utilize historical markings
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How Can We Complexify?

e Can optimize not just weights but also topologies

3@ VSA
e Solution: Start with minimal structure and complexify 3’

Minimal Starting Networks

MA/&M/&/&

Population of Diverse Topologies

whHAAAMGE

e Can search a very large space of configurations!
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How can Innovation Survive?

e Problem: Innovations have initially low fitness

e Solution: Speciate the population
— Innovations have time to optimize
— Mitigates competing conventions

— Promotes diversity
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Further Neuroevolution Techniques Neuroevolution Applications

13,33,39

e Incremental evolution e Evolving composite decision makers 3¢
e Utilizing population culture 18 e Evolving teams of agents 32841
e Evolving ensembles of NNs '6:23:3¢ e Utilizing coevolution®°
(Pardoe GECCO’05)
e Real-time neuroevolution®®
e Evolving neural modules®
e Combining human knowledge with evolution®
e Evolving transfer functions and learning rules #25?
e Combining learning and evolution
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Applications to Control Competitive Coevolution
e Pole-balancing benchmark - 3 ® -
— Originates from the 1960s = =
— Original 1-pole version too easy
— Several extensions: acrobat, jointed, 2-pole,
particle chasing e Evolution requires an opponent to beat

e Good surrogate for other control tasks Such opponents are not always available

— Vehicles and other physical devices

Co-evolve two populations to outdo each other
34
— Process control o7

How to maintain an armsgace?



Competitive Coevolution with NEAT Robot Duel Domain

e Complexification elaborates instead of alters
— Adding more complexity to existing behaviors -
e Can establish a coevolutionary arms race e Two Khepera-like robots forage, pursue, evade *
— Two populations continually outdo each other — Collect food to gain energy
— Absolute progress, not just tricks — Win by crashing to a weaker robot
29 30
Early Strategies Mature Strategies

Nl
;

5
SR
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ELLIIN

e Crash when higher energy Collect food to gain energy

Avoid moving to lose energy

Collect food by accident

Standoff: Difficult to predict outcome

31 e DEMO 32
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Sophisticated Strategy Applications to Games

s b 2 2
h A A
e (Good research platform

e “Fake” a move up, force away from last piece — Controlled domains, clear performance, safe
e Win by making a dash to last piece — Economically important; training games possible
e Complexification — arms race e Board games: beyond limits of search

— Evaluation functions in checkers, chess>%1°
e DEMO 33 20,31

— Filtering information in gé, othello

Discovering Novel Strategies in Othello Strategies in Othello

o’

o
-

o’

] (@) (b) ©

e Positional

(@ (b) ©

— Number of pieces and their positions

Players take turns placing pieces
— Typical novice strategy

e Each move must flank opponent’s piece .

e Mobility
® Surrounded pieces are flipped — Number of available moves: force a bad move
e Player with most pieces wins — Much more powerful, but counterintuitive

— Discovered in 1970’s in Japan
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Evolving Against a Random Player Evolving Against an o-3 Program
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Network sees the board, suggests moves by ranking?' lago’s positional strategy destroyed networks at first

Evolution turned low piece count into an advantage
Mobility strategy emerged!
Achieved 70% winning pgrcentage

Networks maximize piece counts throughout the game
A positional strategy emerges
Achieved 97% winning perééntage

Example game Discovering Novel Strategies
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e Black’s positions strong, but mobility weak e Neuroevolution discovered a strategy novel to us
e White (the network) moves to f2 e “Evolution works by tinkering”
e Black’s available moves b2, g2, and g7 each will — So does neuroevolution

surrender a corner — Initial disadvantage turns into novel advantage
e The network wins by forcing a bad move
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Future Challenge: Utilizing Knowledge

e Given a problem, NE discovers a solution by exploring
— Sometimes you already know (roughly) what works
— Sometimes random initial behavior is not acceptable

e How can domain knowledge be utilized?
— By incorporating rules (Yong GECCO'05)
— By learning from examples

Conclusion

e Al is a broad field with many open questions and exciting
opportunities.

e Neuroevolution, mimicing the natural process of evolution,

is an effective strategy for constructing complex and useful

behavior.
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Numerous Other Applications

Creating art, music®

Theorem proving’

Time-series prediction '’

e Computer system optimization '?

Manufacturing optimization '*
e Process control optimization 3*3°

e Efc.
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