
Algorithms for User Interfaces

Jaakko Järvi

Texas A&M University
Computer Science and Engineering

Parasol Lab

April 3, 2012

Outline

I Story of why algorithms matter in programming

I or a promise of never having to write a GUI event handler again

Outline

I Story of why algorithms matter in programming

I or a promise of never having to write a GUI event handler again

Motivation

Why is software like this?

Motivation

Why is software like this?

Motivation

Dialog

Initial
Height

Initial
Weight

Absolute
Height

Absolute
Width

Relative
Height

Relative
Width

Event
Handler
Abs. W.

Event
Handler
Abs. H.

Event
Handler
Rel. W.

Event
Handler
Rel. H.

last
updated

Preserve
ratio

Event
Handler
Constr.

def ChangeCurrentHeightPx(self, event):
self.LastUpdated = "Height"
constrained = self.Controls["Constrain"].GetValue()
no matter what the percent & current stay bound together
get current height, and compute relative height and place new rel. ht
height = float(self.Controls["AbsolutePx"]["Height"].GetValue())
pct = height / self.InitialSize[self.Height]
self.Controls["Relative%"]["Height"].SetValue(str(pct*100))

if constrained: # update width & width%
self.Controls["Relative%"]["Width"].SetValue(str(pct*100))
width = pct * self.InitialSize[self.Width]
self.Controls["AbsolutePx"]["Width"].SetValue(str(round(width)))

def ChangeCurrentWidthPx(self, event):
self.LastUpdated = "Width"
constrained = self.Controls["Constrain"].GetValue()
no matter what the percent & current stay bound together
get current width, and compute relative width and place new rel. wd
height = float(self.Controls["AbsolutePx"]["Width"].GetValue())
pct = height / self.InitialSize[self.Width]
self.Controls["Relative%"]["Width"].SetValue(str(pct*100))

if constrained: # update height & height%
self.Controls["Relative%"]["Height"].SetValue(str(pct*100))

height = pct * self.InitialSize[self.Height]
self.Controls["AbsolutePx"]["Height"].SetValue(str(round(height)))

def ChangeCurrentHeightPct(self, event):
self.LastUpdated = "Height"
constrained = self.Controls["Constrain"].GetValue()
no matter what the percent & current stay bound together
get current rel. ht, and compute absolute height and place new abs. ht
height = float(self.Controls["Relative%"]["Height"].GetValue())
cur = height * self.InitialSize[self.Height] / 100
self.Controls["AbsolutePx"]["Height"].SetValue(str(round(cur)))

if constrained: # update width & width%
self.Controls["Relative%"]["Width"].SetValue(str(height))
width = height * self.InitialSize[self.Width] / 100
self.Controls["AbsolutePx"]["Width"].SetValue(str(round(width)))

def ChangeCurrentWidthPct(self, event):
self.LastUpdated = "Width"
constrained = self.Controls["Constrain"].GetValue()
no matter what the percent & current stay bound together
get current rel. wd, and compute absolute width and place new abs. wd
width = float(self.Controls["Relative%"]["Width"].GetValue())
cur = width * self.InitialSize[self.Width] / 100
self.Controls["AbsolutePx"]["Width"].SetValue(str(round(cur)))

if constrained: # update height & height%
self.Controls["Relative%"]["Height"].SetValue(str(width))
height = width * self.InitialSize[self.Height] / 100
self.Controls["AbsolutePx"]["Height"].SetValue(str(round(height)))

def ChangeConstrainState(self, event):
constrained = self.Controls["Constrain"].GetValue()
If the ratio is constrained, determine which dimension
was last updated and update the OTHER dimension.
For example: if Height was last updated, use Height as
Width’s new percent, and update Width’s absolute value
if constrained:

if self.LastUpdated == "Height": # update width px & %
pct = float(self.Controls["Relative%"]["Height"].GetValue())
self.Controls["Relative%"]["Width"].SetValue(str(pct))
width = pct * self.InitialSize[self.Width] / 100
self.Controls["AbsolutePx"]["Width"].SetValue(str(round(width)))

else: # update width px & %
pct = float(self.Controls["Relative%"]["Width"].GetValue())
self.Controls["Relative%"]["Height"].SetValue(str(pct))
height = pct * self.InitialSize[self.Height] / 100
self.Controls["AbsolutePx"]["Height"].SetValue(str(round(height)))

Motivation

Dialog

Initial
Height

Initial
Weight

Absolute
Height

Absolute
Width

Relative
Height

Relative
Width

Event
Handler
Abs. W.

Event
Handler
Abs. H.

Event
Handler
Rel. W.

Event
Handler
Rel. H.

last
updated

Preserve
ratio

Event
Handler
Constr.

I Reuse is a proven and successful route to improve quality of
software, and increase programmer productivity

I Vasts amounts of well tested and proven code routinely reused
I GUI components, delivering events, rendering, capturing

interaction
I Example: a typical TextBox widget: 100 methods, recognizes

> 200 events
I Compositions are not reusable⇒ ad-hoc code, defects, inconsistent behavior, costly development

I Incidental data structures arise from a network of objects
I Incidental algorithms arise from the concert of localized actions
I Minimal requirement for reuse: understandable model

I Not satisfied by incidental data structures and algorithms

Motivation

Dialog

Initial
Height

Initial
Weight

Absolute
Height

Absolute
Width

Relative
Height

Relative
Width

Event
Handler
Abs. W.

Event
Handler
Abs. H.

Event
Handler
Rel. W.

Event
Handler
Rel. H.

last
updated

Preserve
ratio

Event
Handler
Constr.

I Reuse is a proven and successful route to improve quality of
software, and increase programmer productivity

I Vasts amounts of well tested and proven code routinely reused
I GUI components, delivering events, rendering, capturing

interaction
I Example: a typical TextBox widget: 100 methods, recognizes

> 200 events
I Compositions are not reusable⇒ ad-hoc code, defects, inconsistent behavior, costly development

I Incidental data structures arise from a network of objects
I Incidental algorithms arise from the concert of localized actions
I Minimal requirement for reuse: understandable model

I Not satisfied by incidental data structures and algorithms

Motivation

Dialog

Initial
Height

Initial
Weight

Absolute
Height

Absolute
Width

Relative
Height

Relative
Width

Event
Handler
Abs. W.

Event
Handler
Abs. H.

Event
Handler
Rel. W.

Event
Handler
Rel. H.

last
updated

Preserve
ratio

Event
Handler
Constr.

I Reuse is a proven and successful route to improve quality of
software, and increase programmer productivity

I Vasts amounts of well tested and proven code routinely reused
I GUI components, delivering events, rendering, capturing

interaction
I Example: a typical TextBox widget: 100 methods, recognizes

> 200 events
I Compositions are not reusable⇒ ad-hoc code, defects, inconsistent behavior, costly development

I Incidental data structures arise from a network of objects
I Incidental algorithms arise from the concert of localized actions
I Minimal requirement for reuse: understandable model

I Not satisfied by incidental data structures and algorithms

Motivation

Dialog

Initial
Height

Initial
Weight

Absolute
Height

Absolute
Width

Relative
Height

Relative
Width

Event
Handler
Abs. W.

Event
Handler
Abs. H.

Event
Handler
Rel. W.

Event
Handler
Rel. H.

last
updated

Preserve
ratio

Event
Handler
Constr.

I Reuse is a proven and successful route to improve quality of
software, and increase programmer productivity

I Vasts amounts of well tested and proven code routinely reused
I GUI components, delivering events, rendering, capturing

interaction
I Example: a typical TextBox widget: 100 methods, recognizes

> 200 events
I Compositions are not reusable⇒ ad-hoc code, defects, inconsistent behavior, costly development

I Incidental data structures arise from a network of objects
I Incidental algorithms arise from the concert of localized actions
I Minimal requirement for reuse: understandable model

I Not satisfied by incidental data structures and algorithms

Motivation

Dialog

Initial
Height

Initial
Weight

Absolute
Height

Absolute
Width

Relative
Height

Relative
Width

Event
Handler
Abs. W.

Event
Handler
Abs. H.

Event
Handler
Rel. W.

Event
Handler
Rel. H.

last
updated

Preserve
ratio

Event
Handler
Constr.

I Reuse is a proven and successful route to improve quality of
software, and increase programmer productivity

I Vasts amounts of well tested and proven code routinely reused
I GUI components, delivering events, rendering, capturing

interaction
I Example: a typical TextBox widget: 100 methods, recognizes

> 200 events
I Compositions are not reusable⇒ ad-hoc code, defects, inconsistent behavior, costly development

I Incidental data structures arise from a network of objects
I Incidental algorithms arise from the concert of localized actions
I Minimal requirement for reuse: understandable model

I Not satisfied by incidental data structures and algorithms

Software is forever doomed!

Given a sorted array A[0] <= A[1] <=...<= A[n−1], we want to
determine if a given element T is in the array. Binary search
solves the problem by keeping track of a range within the
array in which T must be if it is anywhere in the array. Initially
the range is the entire array. The range is shrunk by
comparing its middle element to T, and then discarding half
the range. The process continues until T is found, or until the
range in which it must lie is known to be empty. In an
n-element table, the search uses roughly log2(n)
comparisons.

Software is forever doomed!

int* binary_search(int* first, int* last, int x) {
while (first != last) {

int* middle = first + (last − first) / 2;
if (*middle < x) first = middle + 1;
else last = middle;

}
return first;

}

Cancel that, programming is not forever doomed after all

I The problem: UI related code is
I bloated and buggy

I for example, Adobe’s desktop applications, event handling is
estimated to account for a third of the code and over half of the
defects

I full of incidental data structures and algorithms

I An approach for improving the status quo
I To understand the commonalities that exist in event-handling code
I To define a model that captures these commonalities
I To apply

I replace incidental data structures with explicit data structures
I replace incidental algorithms with explicit reusable algorithm

I Result: substantial increase in reuse, programming productivity,
software correctness and quality

Cancel that, programming is not forever doomed after all

I The problem: UI related code is
I bloated and buggy

I for example, Adobe’s desktop applications, event handling is
estimated to account for a third of the code and over half of the
defects

I full of incidental data structures and algorithms

I An approach for improving the status quo
I To understand the commonalities that exist in event-handling code
I To define a model that captures these commonalities
I To apply

I replace incidental data structures with explicit data structures
I replace incidental algorithms with explicit reusable algorithm

I Result: substantial increase in reuse, programming productivity,
software correctness and quality

Outline

Motivation

Command Parameter Synthesis

Property Models as Multi-way Dataflow Constraint Systems

What was achieved

Experience and Conclusions

Understanding UIs: Command Parameter Synthesis

I Dialogs serve to
assist the user in selecting values for parameters to some
command

I Command interested in only a few values
I Dialog may provide more values than necessary for assistance

I After the user edits a value,
I The dialog is inconsistent

I Then it tries to restore consistency

Understanding UIs: Command Parameter Synthesis

I Dialogs serve to
assist the user in selecting values for parameters to some
command

I Command interested in only a few values

I Dialog may provide more values than necessary for assistance

I After the user edits a value,
I The dialog is inconsistent

I Then it tries to restore consistency

Understanding UIs: Command Parameter Synthesis

I Dialogs serve to
assist the user in selecting values for parameters to some
command

I Command interested in only a few values
I Dialog may provide more values than necessary for assistance

I After the user edits a value,
I The dialog is inconsistent

I Then it tries to restore consistency

Understanding UIs: Command Parameter Synthesis

I Dialogs serve to
assist the user in selecting values for parameters to some
command

200.0

I Command interested in only a few values
I Dialog may provide more values than necessary for assistance

I After the user edits a value,
I The dialog is inconsistent

I Then it tries to restore consistency

Understanding UIs: Command Parameter Synthesis

I Dialogs serve to
assist the user in selecting values for parameters to some
command

200.0

I Command interested in only a few values
I Dialog may provide more values than necessary for assistance

I After the user edits a value,
I The dialog is inconsistent

I Then it tries to restore consistency

Understanding UIs: Command Parameter Synthesis

I Dialogs serve to
assist the user in selecting values for parameters to some
command

200.0

3000

I Command interested in only a few values
I Dialog may provide more values than necessary for assistance

I After the user edits a value,
I The dialog is inconsistent

I Then it tries to restore consistency

Understanding UIs: Command Parameter Synthesis

I Dialogs serve to
assist the user in selecting values for parameters to some
command

200.0

3000

200.0

I Command interested in only a few values
I Dialog may provide more values than necessary for assistance

I After the user edits a value,
I The dialog is inconsistent

I Then it tries to restore consistency

Understanding UIs: Command Parameter Synthesis

I Dialogs serve to
assist the user in selecting values for parameters to some
command

200.0

3000

200.0

4200

I Command interested in only a few values
I Dialog may provide more values than necessary for assistance

I After the user edits a value,
I The dialog is inconsistent

I Then it tries to restore consistency

Outline

Motivation

Command Parameter Synthesis

Property Models as Multi-way Dataflow Constraint Systems

What was achieved

Experience and Conclusions

Core of the Model: Multi-way Dataflow Constraint System

I Variables ...
I tied together by constraints ...

I HeightAbsolute = HeightInitial · (
HeightRelative

100)

I each of which can be satisfied by any of a number of methods
I a: absolute_height = initial_height * relative_height / 100;
I b: relative_height = (absolute_height / initial_height) * 100;

Core of the Model: Multi-way Dataflow Constraint System

I Variables ...

I tied together by constraints ...
I HeightAbsolute = HeightInitial · (

HeightRelative
100)

I each of which can be satisfied by any of a number of methods
I a: absolute_height = initial_height * relative_height / 100;
I b: relative_height = (absolute_height / initial_height) * 100;

Core of the Model: Multi-way Dataflow Constraint System

I Variables ...
I tied together by constraints ...

I HeightAbsolute = HeightInitial · (
HeightRelative

100)

I each of which can be satisfied by any of a number of methods
I a: absolute_height = initial_height * relative_height / 100;
I b: relative_height = (absolute_height / initial_height) * 100;

Core of the Model: Multi-way Dataflow Constraint System

I Variables ...
I tied together by constraints ...

I HeightAbsolute = HeightInitial · (
HeightRelative

100)

I each of which can be satisfied by any of a number of methods
I a: absolute_height = initial_height * relative_height / 100;
I b: relative_height = (absolute_height / initial_height) * 100;

Core of the Model: Multi-way Dataflow Constraint System

I Variables ...
I tied together by constraints ...

I HeightAbsolute = HeightInitial · (
HeightRelative

100)

I each of which can be satisfied by any of a number of methods

I a: absolute_height = initial_height * relative_height / 100;
I b: relative_height = (absolute_height / initial_height) * 100;

Core of the Model: Multi-way Dataflow Constraint System

I Variables ...
I tied together by constraints ...

I HeightAbsolute = HeightInitial · (
HeightRelative

100)

I each of which can be satisfied by any of a number of methods
I a: absolute_height = initial_height * relative_height / 100;
I b: relative_height = (absolute_height / initial_height) * 100;

Multi-way Dataflow Constraint Systems

I Restoring consistency is now just solving the system

I Solution defines a dataflow
I Selection of methods (in order) such that

I all constraints enforced
I no two methods output to same variable

I e.g. a, e → c

Multi-way Dataflow Constraint Systems

200.0

Relative
Height (%)

Absolute
Height

Initial
Height

Relative
Width (%)

Absolute
Width

Initial
Width

c

d

a

b

e

f

I Restoring consistency is now just solving the system
I Solution defines a dataflow

I Selection of methods (in order) such that
I all constraints enforced
I no two methods output to same variable

I e.g. a, e → c

Multi-way Dataflow Constraint Systems

200.0

Relative
Height (%)

Absolute
Height

Initial
Height

Relative
Width (%)

Absolute
Width

Initial
Width

c

d

a

b

e

f

I Restoring consistency is now just solving the system
I Solution defines a dataflow

I Selection of methods (in order) such that
I all constraints enforced
I no two methods output to same variable

I e.g. a, e → c

Multi-way Dataflow Constraint Systems

200.0

3000

Relative
Height (%)

Absolute
Height

Initial
Height

Relative
Width (%)

Absolute
Width

Initial
Width

c

d

a

b

e

f

I Restoring consistency is now just solving the system
I Solution defines a dataflow

I Selection of methods (in order) such that
I all constraints enforced
I no two methods output to same variable

I e.g. a, e → c

Multi-way Dataflow Constraint Systems

200.0

3000

200.0

Relative
Height (%)

Absolute
Height

Initial
Height

Relative
Width (%)

Absolute
Width

Initial
Width

c

d

a

b

e

f

I Restoring consistency is now just solving the system
I Solution defines a dataflow

I Selection of methods (in order) such that
I all constraints enforced
I no two methods output to same variable

I e.g. a, e → c

Multi-way Dataflow Constraint Systems

200.0

3000

200.0

4200

Relative
Height (%)

Absolute
Height

Initial
Height

Relative
Width (%)

Absolute
Width

Initial
Width

c

d

a

b

e

f

I Restoring consistency is now just solving the system
I Solution defines a dataflow

I Selection of methods (in order) such that
I all constraints enforced
I no two methods output to same variable

I e.g. a, e → c

Multi-way Dataflow Constraint Systems

200.0

3000

200.0

4200

Relative
Height (%)

Absolute
Height

Initial
Height

Relative
Width (%)

Absolute
Width

Initial
Width

c

d

a

b

e

f

I Restoring consistency is now just solving the system
I Solution defines a dataflow

I Selection of methods (in order) such that
I all constraints enforced
I no two methods output to same variable

I e.g. a, e → c

Picking the “right” solution

Relative
Height (%)

Absolute
Height

Initial
Height

Relative
Width (%)

Absolute
Width

Initial
Width

c

d

a

b

e

f

Relative
Height (%)

Absolute
Height

Initial
Height

Relative
Width (%)

Absolute
Width

Initial
Width

c

d

a

b

e

f

I Programmer only defines relations and their methods, not which
method to execute and when ⇒ often multiple solutions

I Need a way to order them

I In general, want to prefer methods that change older values
I Priorities = Hierarchical Stay Constraints

I Stay constraint = does nothing, so its variable stays the same
I Hierarchy = groups of constraints with certain strength

Picking the “right” solution

Relative
Height (%)

Absolute
Height

Initial
Height

Relative
Width (%)

Absolute
Width

Initial
Width

c

d

a

b

e

f

Relative
Height (%)

Absolute
Height

Initial
Height

Relative
Width (%)

Absolute
Width

Initial
Width

c

d

a

b

e

f

I Programmer only defines relations and their methods, not which
method to execute and when ⇒ often multiple solutions

I Need a way to order them

I In general, want to prefer methods that change older values
I Priorities = Hierarchical Stay Constraints

I Stay constraint = does nothing, so its variable stays the same
I Hierarchy = groups of constraints with certain strength

Picking the “right” solution

Relative
Height (%)

Absolute
Height

Initial
Height

Relative
Width (%)

Absolute
Width

Initial
Width

c

d

a

b

e

f

Relative
Height (%)

Absolute
Height

Initial
Height

Relative
Width (%)

Absolute
Width

Initial
Width

c

d

a

b

e

f

I Programmer only defines relations and their methods, not which
method to execute and when ⇒ often multiple solutions

I Need a way to order them

I In general, want to prefer methods that change older values
I Priorities = Hierarchical Stay Constraints

I Stay constraint = does nothing, so its variable stays the same
I Hierarchy = groups of constraints with certain strength

Picking the “right” solution

Relative
Height (%)

Absolute
Height

Initial
Height

Relative
Width (%)

Absolute
Width

Initial
Width

c

d

a

b

e

f

Relative
Height (%)

Absolute
Height

Initial
Height

Relative
Width (%)

Absolute
Width

Initial
Width

c

d

a

b

e

f

I Programmer only defines relations and their methods, not which
method to execute and when ⇒ often multiple solutions

I Need a way to order them

I In general, want to prefer methods that change older values

I Priorities = Hierarchical Stay Constraints
I Stay constraint = does nothing, so its variable stays the same
I Hierarchy = groups of constraints with certain strength

Picking the “right” solution

Initial Height 1
Initial Width 2
Relative Height 3
Absolute Height 4
Relative Width 5
Absolute Width 6

I Programmer only defines relations and their methods, not which
method to execute and when ⇒ often multiple solutions

I Need a way to order them

I In general, want to prefer methods that change older values
I Priorities

= Hierarchical Stay Constraints
I Stay constraint = does nothing, so its variable stays the same
I Hierarchy = groups of constraints with certain strength

Picking the “right” solution

Relative
Height (%)

Absolute
Height

Initial
Height

Relative
Width (%)

Absolute
Width

Initial
Width

c

d

a

b

e

f

4

1

3

6

2

5

Initial Height 1
Initial Width 2
Relative Height 3
Absolute Height 4
Relative Width 5
Absolute Width 6

I Programmer only defines relations and their methods, not which
method to execute and when ⇒ often multiple solutions

I Need a way to order them

I In general, want to prefer methods that change older values
I Priorities = Hierarchical Stay Constraints

I Stay constraint = does nothing, so its variable stays the same
I Hierarchy = groups of constraints with certain strength

Picking the “right” solution

Relative
Height (%)

Absolute
Height

Initial
Height

Relative
Width (%)

Absolute
Width

Initial
Width

c

d

a

b

e

f

4

1

3

6

2

5

Initial Height 1
Initial Width 2
Relative Height 3
Absolute Height 4
Relative Width 5
Absolute Width 6

I Programmer only defines relations and their methods, not which
method to execute and when ⇒ often multiple solutions

I Need a way to order them

I In general, want to prefer methods that change older values
I Priorities = Hierarchical Stay Constraints

I Stay constraint = does nothing, so its variable stays the same

I Hierarchy = groups of constraints with certain strength

Picking the “right” solution

Relative
Height (%)

Absolute
Height

Initial
Height

Relative
Width (%)

Absolute
Width

Initial
Width

c

d

a

b

e

f

4

1

3

6

2

5

Initial Height 1
Initial Width 2
Relative Height 3
Absolute Height 4
Relative Width 5
Absolute Width 6

I Programmer only defines relations and their methods, not which
method to execute and when ⇒ often multiple solutions

I Need a way to order them

I In general, want to prefer methods that change older values
I Priorities = Hierarchical Stay Constraints

I Stay constraint = does nothing, so its variable stays the same
I Hierarchy = groups of constraints with certain strength

Explicit Algorithm for Command Parameter Synthesis

I Each UI element has a variable in a constraint system
I Event handling code becomes auto-generated boilerplate

I Value modification generates a request to the constraint system to
modify one variable and its priority, and solve

I At all times, the UI element shows the value of the variable in the
constraint system

Outline

Motivation

Command Parameter Synthesis

Property Models as Multi-way Dataflow Constraint Systems

What was achieved

Experience and Conclusions

Incidental Data Structure → Explicit Model

Incidental Data Structure → Explicit Model

Dialog

Initial
Height

Initial
Weight

Absolute
Height

Absolute
Width

Relative
Height

Relative
Width

Event
Handler
Abs. W.

Event
Handler
Abs. H.

Event
Handler
Rel. W.

Event
Handler
Rel. H.

last
updated

Preserve
ratio

Event
Handler
Constr.

Incidental Data Structure → Explicit Model

Dialog

Initial
Height

Initial
Weight

Absolute
Height

Absolute
Width

Relative
Height

Relative
Width

Event
Handler
Abs. W.

Event
Handler
Abs. H.

Event
Handler
Rel. W.

Event
Handler
Rel. H.

last
updated

Preserve
ratio

Event
Handler
Constr.

=⇒
Relative

Height (%)

Absolute
Height

Initial
Height

Relative
Width (%)

Absolute
Width

Initial
Width

c

d

a

b

e

f

4

1

3

6

2

5

Code of Incidental Algorithm → Model Declaration

def ChangeCurrentHeightPx(self, event):
self.LastUpdated = "Height"
constrained = self.Controls["Constrain"].GetValue()
no matter what the percent & current stay bound together
get current height, and compute relative height and place new rel. ht
height = float(self.Controls["AbsolutePx"]["Height"].GetValue())
pct = height / self.InitialSize[self.Height]
self.Controls["Relative%"]["Height"].SetValue(str(pct*100))

if constrained: # update width & width%
self.Controls["Relative%"]["Width"].SetValue(str(pct*100))
width = pct * self.InitialSize[self.Width]
self.Controls["AbsolutePx"]["Width"].SetValue(str(round(width)))

def ChangeCurrentWidthPx(self, event):
self.LastUpdated = "Width"
constrained = self.Controls["Constrain"].GetValue()
no matter what the percent & current stay bound together
get current width, and compute relative width and place new rel. wd
height = float(self.Controls["AbsolutePx"]["Width"].GetValue())
pct = height / self.InitialSize[self.Width]
self.Controls["Relative%"]["Width"].SetValue(str(pct*100))

if constrained: # update height & height%
self.Controls["Relative%"]["Height"].SetValue(str(pct*100))
height = pct * self.InitialSize[self.Height]
self.Controls["AbsolutePx"]["Height"].SetValue(str(round(height)))

def ChangeCurrentHeightPct(self, event):
self.LastUpdated = "Height"
constrained = self.Controls["Constrain"].GetValue()
no matter what the percent & current stay bound together
get current rel. ht, and compute absolute height and place new abs. ht
height = float(self.Controls["Relative%"]["Height"].GetValue())
cur = height * self.InitialSize[self.Height] / 100
self.Controls["AbsolutePx"]["Height"].SetValue(str(round(cur)))

if constrained: # update width & width%

self.Controls["Relative%"]["Width"].SetValue(str(height))
width = height * self.InitialSize[self.Width] / 100
self.Controls["AbsolutePx"]["Width"].SetValue(str(round(width)))

def ChangeCurrentWidthPct(self, event):
self.LastUpdated = "Width"
constrained = self.Controls["Constrain"].GetValue()
no matter what the percent & current stay bound together
get current rel. wd, and compute absolute width and place new abs. wd
width = float(self.Controls["Relative%"]["Width"].GetValue())
cur = width * self.InitialSize[self.Width] / 100
self.Controls["AbsolutePx"]["Width"].SetValue(str(round(cur)))

if constrained: # update height & height%
self.Controls["Relative%"]["Height"].SetValue(str(width))
height = width * self.InitialSize[self.Height] / 100
self.Controls["AbsolutePx"]["Height"].SetValue(str(round(height)))

def ChangeConstrainState(self, event):
constrained = self.Controls["Constrain"].GetValue()
If the ratio is constrained, determine which dimension
was last updated and update the OTHER dimension.
For example: if Height was last updated, use Height as
Width’s new percent, and update Width’s absolute value
if constrained:

if self.LastUpdated == "Height": # update width px & %
pct = float(self.Controls["Relative%"]["Height"].GetValue())
self.Controls["Relative%"]["Width"].SetValue(str(pct))
width = pct * self.InitialSize[self.Width] / 100
self.Controls["AbsolutePx"]["Width"].SetValue(str(round(width)))

else: # update width px & %
pct = float(self.Controls["Relative%"]["Width"].GetValue())
self.Controls["Relative%"]["Height"].SetValue(str(pct))
height = pct * self.InitialSize[self.Height] / 100
self.Controls["AbsolutePx"]["Height"].SetValue(str(round(height)))

Code of Incidental Algorithm → Model Declaration

def ChangeCurrentHeightPx(self, event):
self.LastUpdated = "Height"
constrained = self.Controls["Constrain"].GetValue()
no matter what the percent & current stay bound together
get current height, and compute relative height and place new rel. ht
height = float(self.Controls["AbsolutePx"]["Height"].GetValue())
pct = height / self.InitialSize[self.Height]
self.Controls["Relative%"]["Height"].SetValue(str(pct*100))

if constrained: # update width & width%
self.Controls["Relative%"]["Width"].SetValue(str(pct*100))
width = pct * self.InitialSize[self.Width]
self.Controls["AbsolutePx"]["Width"].SetValue(str(round(width)))

def ChangeCurrentWidthPx(self, event):
self.LastUpdated = "Width"
constrained = self.Controls["Constrain"].GetValue()
no matter what the percent & current stay bound together
get current width, and compute relative width and place new rel. wd
height = float(self.Controls["AbsolutePx"]["Width"].GetValue())
pct = height / self.InitialSize[self.Width]
self.Controls["Relative%"]["Width"].SetValue(str(pct*100))

if constrained: # update height & height%
self.Controls["Relative%"]["Height"].SetValue(str(pct*100))
height = pct * self.InitialSize[self.Height]
self.Controls["AbsolutePx"]["Height"].SetValue(str(round(height)))

def ChangeCurrentHeightPct(self, event):
self.LastUpdated = "Height"
constrained = self.Controls["Constrain"].GetValue()
no matter what the percent & current stay bound together
get current rel. ht, and compute absolute height and place new abs. ht
height = float(self.Controls["Relative%"]["Height"].GetValue())
cur = height * self.InitialSize[self.Height] / 100
self.Controls["AbsolutePx"]["Height"].SetValue(str(round(cur)))

if constrained: # update width & width%

self.Controls["Relative%"]["Width"].SetValue(str(height))
width = height * self.InitialSize[self.Width] / 100
self.Controls["AbsolutePx"]["Width"].SetValue(str(round(width)))

def ChangeCurrentWidthPct(self, event):
self.LastUpdated = "Width"
constrained = self.Controls["Constrain"].GetValue()
no matter what the percent & current stay bound together
get current rel. wd, and compute absolute width and place new abs. wd
width = float(self.Controls["Relative%"]["Width"].GetValue())
cur = width * self.InitialSize[self.Width] / 100
self.Controls["AbsolutePx"]["Width"].SetValue(str(round(cur)))

if constrained: # update height & height%
self.Controls["Relative%"]["Height"].SetValue(str(width))
height = width * self.InitialSize[self.Height] / 100
self.Controls["AbsolutePx"]["Height"].SetValue(str(round(height)))

def ChangeConstrainState(self, event):
constrained = self.Controls["Constrain"].GetValue()
If the ratio is constrained, determine which dimension
was last updated and update the OTHER dimension.
For example: if Height was last updated, use Height as
Width’s new percent, and update Width’s absolute value
if constrained:

if self.LastUpdated == "Height": # update width px & %
pct = float(self.Controls["Relative%"]["Height"].GetValue())
self.Controls["Relative%"]["Width"].SetValue(str(pct))
width = pct * self.InitialSize[self.Width] / 100
self.Controls["AbsolutePx"]["Width"].SetValue(str(round(width)))

else: # update width px & %
pct = float(self.Controls["Relative%"]["Width"].GetValue())
self.Controls["Relative%"]["Height"].SetValue(str(pct))
height = pct * self.InitialSize[self.Height] / 100
self.Controls["AbsolutePx"]["Height"].SetValue(str(round(height)))

⇒
sheet image_resize {

input:
initial_width : 5 * 300;
initial_height : 7 * 300;

interface:
preserve_ratio : true;
absolute_width : initial_width;
absolute_height : initial_height;
relative_width; relative_height;

logic:
relate {

absolute_height <== relative_height * initial_height / 100;
relative_height <== absolute_height * 100 / initial_height;

}
relate {

absolute_width <== relative_width * initial_width / 100;
relative_width <== absolute_width * 100 / initial_width;

}
when (preserve_ratio) relate {

relative_width <== relative_height;
relative_height <== relative_width;

}
}

Declarative Specification of Command Parameter Synthesis

sheet image_resize {
input:

initial_width : 5 * 300;
initial_height : 7 * 300;

interface:
preserve_ratio : true;
absolute_width : initial_width;
absolute_height : initial_height;
relative_width; relative_height;

logic:
relate {

absolute_height <== relative_height * initial_height / 100;
relative_height <== absolute_height * 100 / initial_height;

}
relate {

absolute_width <== relative_width * initial_width / 100;
relative_width <== absolute_width * 100 / initial_width;

}
when (preserve_ratio) relate {

relative_width <== relative_height;
relative_height <== relative_width;

}
}

Declarative Specification of Command Parameter Synthesis

sheet image_resize {
input:

initial_width : 5 * 300;
initial_height : 7 * 300;

interface:
preserve_ratio : true;
absolute_width : initial_width;
absolute_height : initial_height;
relative_width; relative_height;

logic:
relate {

absolute_height <== relative_height * initial_height / 100;
relative_height <== absolute_height * 100 / initial_height;

}
relate {

absolute_width <== relative_width * initial_width / 100;
relative_width <== absolute_width * 100 / initial_width;

}
when (preserve_ratio) relate {

relative_width <== relative_height;
relative_height <== relative_width;

}
}

Declarative Specification of Command Parameter Synthesis

sheet image_resize {
input:

initial_width : 5 * 300;
initial_height : 7 * 300;

interface:
preserve_ratio : true;
absolute_width : initial_width;
absolute_height : initial_height;
relative_width; relative_height;

logic:
relate {

absolute_height <== relative_height * initial_height / 100; // a
relative_height <== absolute_height * 100 / initial_height; // b

}
relate {

absolute_width <== relative_width * initial_width / 100; // c
relative_width <== absolute_width * 100 / initial_width; // d

}
when (preserve_ratio) relate {

relative_width <== relative_height; // e
relative_height <== relative_width; // f

}
}

Algorithms for User Interfaces

I Before, every new feature required more spaghetti (incidental)
code, specific to each dialog

I Now, each new feature can be defined as a reusable algorithm in
a library

Scripting

I A script is a recorded sequence of commands
I e.g. remove red-eye, skin blemishes, extra weight

I What do we record from our model as part of the script?
I Remember that probably not every value is useful

I Some are provided by the document
I Some are provided by the user

I Only want to capture what the user intended

Scripting

I A script is a recorded sequence of commands
I e.g. remove red-eye, skin blemishes, extra weight

I What do we record from our model as part of the script?
I Remember that probably not every value is useful

I Some are provided by the document
I Some are provided by the user

I Only want to capture what the user intended

Scripting

I A script is a recorded sequence of commands
I e.g. remove red-eye, skin blemishes, extra weight

I What do we record from our model as part of the script?
I Remember that probably not every value is useful

I Some are provided by the document
I Some are provided by the user

I Only want to capture what the user intended

Capturing the User’s Intent

I Command looks at Absolute Height, Absolute Width,

I but what we wanted to change is Relative Height

Capturing the User’s Intent

I Command looks at Absolute Height, Absolute Width,

I but what we wanted to change is Relative Height

Capturing the User’s Intent

200.0

I Command looks at Absolute Height, Absolute Width,

I but what we wanted to change is Relative Height

Outline

Motivation

Command Parameter Synthesis

Property Models as Multi-way Dataflow Constraint Systems

What was achieved

Experience and Conclusions

Experiences

I Early experience deploying our approach for command
parameter synthesis at Adobe

I Code reductions of a factor of 8 to 10
I Fewer defects
I Consistency among user interfaces

Experiment

I Rewriting user interface code for a major desktop application

I Four teams of roughly three engineers each,

I each tasked with rewriting a large number of dialogs and palettes

I Three teams (AE1–AE3) used the declarative approach, fourth
team (TF) a modern vendor-supplied object-oriented UI
framework

Results: Productivity

I AE1–AE3 teams combined completed roughly 75 dialogs and
palettes, with 50 more underway

I TF team completed fewer than 10 altogether

Results: Defect Count

0 2 4 6 8 10 12 14 16
Reporting Week

0
5

10
15
20
25
30
35

Bu
gs

 R
ep

or
te

d

AE1
AE2
AE3
TF

Future Directions

I Opportunities for user interfaces using property models
I Recently worked on algorithms for enabling/disabling
I Presets and defaults will follow
I Perfecting the model for command parameter synthesis

I Incidental structures present in many areas of software
I Want to know how the approach generalizes
I Currently developing ideas about applying the declarative

approach/constraint systems to other kinds of document modeling

	Motivation
	Command Parameter Synthesis
	Property Models as Multi-way Dataflow Constraint Systems
	What was achieved
	Experience and Conclusions

