Complex Dynamics Is Abolished in Introduction

De'ayed Recurrent Systems with e Feedback systems with a single delay time: known to exhibit
various dynamical behaviors including complex oscillations and
Distributed Feedback Times chaos.
e With broad distribution of delays, yields a larger set of parameter
by Thiel et al. (2003) values that results in fixed point behavior or simple osciallatory
behavior.
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Background Basic Concept: Bifurcation
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e In time-lagged recurrent feedback systems, feedback gain and ZZ

delay may serve as a bifurcation parameter whose increase yields 07 I

a sequence of bifurcations leading from fixed point behavior to 08T
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periodic orbits, and finally chaos. 04|
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e In most studies, recurrent signals are assumed to come from a 02 |
singular instant in the past. 0.1 ¢
. i i . 0 1 1‘.5 é 2‘.5 é 3‘.5 4
e However, in biological systems, there may be a wider range of Parameter a

delay in the feedback. e Logisticmap: x = a X = X (1 — x).

o With random initial values x(, calculate sequence of x’s, and find
the steady-state.

e Plot the steady states for different parameter values: Bifurcation
diagram. 4



Approach

e Build up from existing models (with singular delay) showing
complex dynamic.

— Inhibitory feedback in hippocampus.

— Mackey-Glass equation (regulation process of white blood
cells).

— Logistic growth of an ecological population under resource

limits.

e |Introduce distributed delay and observe resulting change in
behavior.

Distribution of Delay
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® Some assumptions:

® Simplest form:

£() =

0 otherwise

Neural Feedback in the Hippocampus

® Mossy fibers (exc) — CA3 pyramidal cell (exc) — interneuronal basket
cells (inh) — CAS pyramidal cell

e Delay in the feedback inhibitory loop can vary.

e Amount of feedback may also affect dynamic behavior: penicillin can
modulate this (GABA antagonist).

e Model:
du(t)
dt

Fe(v(?))
L4 Fe(v(t)n

)

=-—Tw(t)+Te—-p

Fe(v(t)) = fo/ [v(t —7) — 0] L &(T)drT.
0

v(t): membrane potential; I': inverse time const.; e: external input; 3:
feedback gain factor; F'(-): basket cell firing rate; 6 threshold;
[z]+ = xH (x); &: distribution function.
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Results: Hippocampus Model with Singular Delay
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Results: Hippocampus Model with Distributed Delay
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Mackey-Glass System: White Blood Cell Regulation

® Production of neutrophil granulocytes (a type of white blood cell).

® Production depends on present amount, but new production

matures with a delay.

o Altered feedback gain or delay causes period-doubling

bifurcations leading to chaos: Suspected cause of chronic

granulocytic leukemia.
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Results: Period Numbers against Parameters
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e [3: bifurcation parameter (inhibitory gain).
e o : temporal dispersion.

e Higher o gives wider region with low period number as (3 varies.
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Mackay-Glass System

o Normalized concentration of cells:
du(t)
dt

Ve (v(@®))

= O T e

Ve(v(t)) = / v(t — 1)&(T)dT
0

~: cell loss rate; beta: gain in regulation; Same & as before.
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Results: Mackay-Glass Model with Distributed Delay
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Population Density

e More distributed delay

gives simpler dynamic.

e Bar indicates the inte-

gration interval.

e Delay-differential equation for population density /V:

£(r) =

AN (t)
dt

:er(l—%NANwQ,

Ne(N(1)) = / N(t — 7)§(7)dr,
0

0 if0 <7 < Tmin

(T — Tmin) exp(—(7 — 7'min)/t9)/92 if 7 > Tmin

Mean delay: 7,,, = Tmin + 20; Variance in delay: o2 = 26,

15

Population Dynamics

e Typical model is the logistic equation (introduced earlier).

e |Individual maturation time may differ, causeing a spread in the
delay distribution.
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Population Density for Different Delay Distributions
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e High-amplitude oscillation is not good due to the risk of extinction
during low-population periods.

e Distributed delay causes population to stabilize into a stable
equilibrium. 16



Summary and Discussions

Increasing the spread of delay distribution has a profound effect of
dynamics in biological systems.

Why does the dynamic become simpler in this case?: smoothing,

reduced variance.

Integration interval is shorter than period of oscillation, so there’s

no over-smoothing.

The observed effects are robust.
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