Spectral Histogram Model for Texton Spectral Histogram Overview

Modeling and Textu re Discrimination e Filter response distribution as a quantitative definition of texton
(texture element) pattern.
by Liu and Wang (2002) e Stochastic generation of images with similar spectral histogram
signature.
CPSC 644

e Use of X2-distance for comparing spectral histograms.

e Texture segmentation using spectral histograms: comparison to

Presented by Yoonsuck Choe human psychophysics.
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Texture Perception Texture Synthesis
e Texture perception is an important component in early visual e Given probability distributions based on local correlation, use
perception. statistical sampler to generate (synthesize) individual textures.
e Texture discrimination is near effortless. e Local statistical methods not good for dealing with realistic
. textures containing large-scale features.
e Textons: basic elements that make up textures:

Elongated blobs define by color, orientation, etc. e Image pyramid approach can be used to deal with such an issue.

Line terminators

Line crossings

Local closure

Textons are hard to describe formally.



Spectral Histogram
Image window W
Fiters { F/(*) o = 1,2, ..., K }.
Filter response W (@) = F(@) s W
Response histogram H‘(;)

Spectral histogram: response histograms of all filters
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Spectral Histgrams as Texton Patterns
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® Synthesize texture based on spectral histogram from observed

image. Use of Gibbs sampler to reduce differences in SH.
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Examples of Spectral Histogram
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e Similar for similar (but not identical) textures, different for different

textures.

Texture Synthesis Algorithm

For a binary mput texture, compute H'?

obs? o=
l,... . K.
Initialize Iy, as a binary white noise image and
A —0.
Repeat
For each pixel location # in Iy, do
Ibluck — lsyu-« lb]ack (E) — 0-« lwhile — lsyus

Iwhile(ﬁ} — 1.
Compute 4 and H” | a=1,....K.

otk Luhite *

[CI o .
Eblack - Zf:l Zle /"E ) x Hl(bl:ck (1)*
@)y o .
Eyhite — Zé{:l z{":l /”5 : X Hl(wgile (l)
Pbluck - Cxp(_Ebluck)/
(Cxp(_Eb]uck) + Cxp(_Ewhile))-
Liya (¥) < 0 with probability Py and Ly, (7) —
1_ with 1 — Pbluck-
W= 2P 4 (HE (1) — Hy (i)
Until 57 1H2 (1) — HG ()] <« for o= 1.2,
K.



Texture Synthesis Results Synthesis of Natural Textures
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Interim Summary Texture Discriminability in Humans
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® Spectral histograms “capture a level of image description that is n3r4 0000
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e Humans respond differently to different texture combinations.
e Some stand out more than others.
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Texture Discriminability with Spectral Histograms

® Results are consistent with human psychophysics.

Texture Discriminability with Spectral Histograms
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e Solid line: spectral histogram

Dots, dashes: psychophysical data
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Texture Discriminability with Spectral Histograms

Table 1

Texture discrimination scores

Texture pair Texture discriminability

Human data Malik and Perona  Spectral

(Krose. 1986)  results (Malik & histogram

Perona, 1990) results

(+0) 100 407 0.135
(+1[D 88.1 225 0.036
(L +) 68.6 203 0.027
(L M) n.a. 165 0.023
(A —) 52.3 159 0.018
(+T 37.6 120 0.015
(+X) 30.3 104 0.014
(TL) 30.6 90 0.004
(L, Mp) n.d. 85 0.001
(R-mirror-R) n.a. 50 -0.01

e Results are consistent with human psychophysics.
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Asymmetry in Texture Discrimination
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o Asymmetry is found in texture discriminability even when the

(a)

constituent textures are the same.

(b)

e SH discriminability scores are: (a) 0.005 and (b) 0.018.
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Comparison to Other Texture Synthesis Methods
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e Original; Heeger and Bergen (1995); Spectral histogram
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Texture Boundary Detection

e Calculate texture gradient based on x2 distance in adjacent

regions.
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Discrimination Based on 2nd-order Moment

Frequency

Filter response
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e Texture made of response distributions of same mean but
different variance: SH can discriminate these.
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Discussion
e Filter selection
o Texture segregation
e Biological plausibility
— Filters: no problem
— Histograms: sketchy
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Discussion (YC) References
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Oh, S., and Choe, Y. (2006). Segmentation of textures defined on flat vs. layered surfaces using neural networks:
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e What is a texture?
e Why did the visual system evolve to be sensitive to textures?
® See Oh and Choe (2006) for details.

21-1

21



