Relationship Between Visual Cortical Response Powerlaw and

Perceptual Threshold

ECE Computer Engineering & Systems Seminar September 18, 2012

Yoonsuck Choe, Ph.D.

Department of Computer Science and Engineering

Texas A&M University

Based on Sarma and Choe (2006) and Lee and Choe (2003)

What Is Common in These Images?

2

What Is Common in These Images?

- In color, natural image, from the Kodak data set, ...
 - What about the brightness intensity histogram?

Brightness Intensity Histogram

- They are very different!
- What is similar then?

The Visual Cortical Response

- Retina: center-surround filter
- LGN (thalamus): center-surround filter
- Visual cortex: oriented Gabor \$ilter

Visual Cortical Response (Simulated)

- This is (sort of) how the visual cortex responds to these images (Gabor filtering [next slide]).
 - Oriented edges are most prominently detected.
 - Would the response histogram vary as much as the brightness intensity histogram?

Simulating Visual Cortical Response: Convolution

with Oriented Gabor Filters

• Oriented Gabor filters simulate visual cortical receptive fields.

6

Visual Cortical Response Histogram

- The response (called orientation energy *E*) distributions are similar across the board!
- **Power law** property is observed (this is already a well-known result; Field 1987): $f(x) = 1/x^a$ (a > 0).

YAPL:

Yet Another Power Law!

- Power law seems to be ubiquitous in nature and in human-made artifacts:
 - 957,000 documents returned by Google Scholar!
 - Power law phenomena range from www topology, financial market fluctuation, to word frequency and much more (see e.g., Clauset et al. 2009).
- However, it is not often asked:
 - What use is it?
 - What fundamental mechanisms underlie such phenomena?

9

Overview

- 1. Power law + Gaussian baseline = Human perceptual threshold.
- 2. Why the Gaussian baseline?
- 3. Deeper questions:
 - (a) Neural implementation
 - (b) Mathematical/statistical implications

10

- Insight: Comparing the power law distribution with a normal distribution with the **same variance** can be useful. .
 - **Assumption**: normal distribution can be a suitable baseline.
- The point L2 where h(E) becomes greater than g(E) may be important, i.e., orientation energy is **suspiciously high**.

Part I:

Power Law + Gaussian Baseline

= Human Perceptual Threshold

Power Law vs. Human Perceptual Threshold

- Can there be a relationship between the threshold of E above which humans see it as **salient** and the point L2?
 - Experiment: Human participant selected threshold of E so that (1) contours are preserved as much as possible and (2) noise reduced as much as possible.

13

Further Discoveries: L2 and Response Std. Dev.

- Further, the raw standard deviation σ of the response distribution is **linearly related** to L2.
 - Question: Is there an analytical solution to
 - $a\frac{1}{x^b} = c \times \exp(-\frac{x^2}{d})$, where the constants a, b, c, and d depend on σ ? (more on this later)

Checking the Hunch: Comparison to Human

Perceptual Threshold

- $\bullet~$ There is a clear linear relationship (n=31) between
 - Human-selected threshold and
 - L2, the intersection of h(E) and g(E).

14

Using σ to Estimate Optimal E Threshold

• Relating σ back to the human-chosen E threshold gives again a **linear relation**:

$$T_{\sigma} = 1.37\sigma - 2176.59.$$

• Thus, instead of calculating the histogram, etc., we can simply calculate the raw standard deviation σ to estimate the appropriate E threshold.

Three Quantities

An unexpected correlation found among:

- Human-selected threshold.
- *L*2, point of intersection of response power law and Gaussian baseline.
- σ , standard deviation of response power law.

Application: Thresholding Cortical Response E

• Using T_{σ} as a threshold gives good results, comparable to humans' preference.

17

Thresholding Cortical Response E

• Original, human-selected, 85-percentile, and T_{σ} .

Thresholding E: Limitations of Fixed Percentile

18

• Original, human-selected, 85-percentile, and T_{σ} .

Thresholding *E*: Limitations of Global Thresholding

- Original, human-selected, 85-percentile, T_{σ} , and T_{σ} local.
- Estimating T_{σ} at a local scale solves the problem.
 - 21

Part I: Summary

- Visual cortical response exhibits a power law.
- Comparing the power law to a baseline normal distribution results in a quantity (*L*2) that is linearly correlated with human perceptual threshold.
- *L*2 is in turn linearly correlated with the standard deviation of the power law.
- Straight-forward application possible (thresholding, salient edge detection):
 - Simple calculation of response variance is enough!

22

Why the Gaussian Baseline?

- The results are promising, but why?
- Why is the normal (Gaussian) distribution a reasonable choice as a baseline?
 - Central limit theorem?
 - People commonly use it?

Part II: Why the Gaussian Baseline?

Power Law, Gaussian Dist., vs. Suspicious

Coincidence

 What is the relationship between salience defined as super-Gaussian and the conventional definition of suspiciousness (Barlow 1994, 1989)?

P(A,B) > P(A)P(B),

White-Noise Analysis

• In white-noise images, each pixel is independent, so, given any pixel pair (*A*, *B*):

$$P(A,B) = P(A)P(B)$$

- Would we get a power law response?
 - If the Gaussian baseline assumption was correct, since there is no salient edge, the response distribution should be Gaussian.

Use of White Noise Response as a Baseline

26

- Can we use the white-noise response as a baseline for thresholding *E*?: Yes!
- Generate white noise response, and scale it by σ_h/σ_r where σ_h and σ_r are the STD in the natural image response and the white noise response.
- Recalculate the response distribution (if necessary).

25

Visual Response to White Noise Images

- The orientation energy distribution is very close to a Gaussian, especially near the high *E* values.
- Thus, the T_{σ} thresholding will not produce a meaningful threshold.

New Baseline for Salience vs. Humans

New L_2 vs. Human Chosen Threshold $(r = 0.98)^*$

- Strong linearity is found between the new L_2 and the human selected threshold.
 - * This is much tighter than the Gaussian baseline

$$(r = 0.91)!$$

29

Part II: Summary

- Gaussian baseline corresponds to response distribution to white noise images.
- In white noise images, each pixel is independent from the others.
- This relates to the idea of suspicious coincidence by Barlow (1994)
- Threshold derived using the white-noise response distribution is even more accurate than earlier results.

New Baseline for Salience vs. σ

- New L_2 vs. σ (r = 0.91)
- The same linearity between L_2 and the σ is maintained.

30

Part III: Deeper Questions

Neural Implementation

• The local (or even global) threshold calculation can be easily implemented in a neural circuit:

$$\sigma^2 = \sum_{i,j} w_{ij} g(V_{ij}),$$

where w_{ij} are connection weights serving as normalization constants, $g(x) = x^2$, and V_{ij} is the V1 response at location i, j.

• The resulting value can be passed through another activation function $f(x) = \sqrt{x}$.

$$f(\sigma^2) = \sqrt{\sigma^2} = \sigma$$

These are all plausible functions that can be implemented in a biological neural network.
33

Power Law, Gaussian, and Lambert W function

How I found out: Wolfram Alpha (Mathematica, prior to that).

Mathematical/Statistical Implications

Is there an analytical solution to $a\frac{1}{x^b} = c \times \exp(-\frac{x^2}{d})$?

• This leads to another obscure yet surprisingly ubiquitous function called the Lambert W function W(x) which is defined as the inverse of the following function:

 $x = W \exp(W)$

- The Lambert W function is popping up everywhere: delay differential equations (with applications in population dynamics, economics, control theory), projectile trajectory calculation, voltage/current/resistance in a diode, etc. (see Hayes 2005 for a review)–A *déjà vu*?
- **Speculation**: Power law, Gaussian, and Lambert W function are deeply related.

34

Related Work

- Malik et al. (Malik et al. 1999) used peak values of orientation energy to define boundaries of regions of coherent brightness and texture.
- The non-Gaussian nature of orientation energy (or wavelet response) histograms has also been recognized and utilized, especially in denoising and compression (Simoncelli and Adelson 1996).
- Other kinds of histograms, e.g., spectral histogram by Liu and Wang (2002), or spatial frequency distributions (Field 1987), may be amenable to a similar analysis.

37

Acknowledgments

- King Abdullah University of Science and Technology (KAUST)
- Institute for Applied Mathematics and Computational Sciences (IAMCS) at Texas A&M University

Conclusions

- Visual cortical response shows a power law.
- Power law compared to Gaussian baseline gives accurate predictor for human perceptual threshold.
- Standard deviation of the response is a simple yet powerful approximation.
- · Gaussian baseline found to be related to suspicious coincidence.
- Power law, Gaussian baseline, and Lambert W function intricately interrelated.
- Lesson: Power law is there for a reason, and it can greatly simplify things downstream.

38

References

Barlow, H. (1994). What is the computational goal of the neocortex? In Koch, C., and Davis, J. L., editors, Large Scale Neuronal Theories of the Brain, 1–22. Cambridge, MA: MIT Press.

Barlow, H. B. (1989). Unsupervised learning. Neural Computation, 1:295-311.

Clauset, A., Shalizi, C. R., and Newman, M. E. J. (2009). Power-law distributions in empirical data. *SIAM Review*, 51:661–703.

Curry, A. (2010 July-August). The mathematics of terrorism. Discover, xxxxx.

Field, D. J. (1987). Relations between the statistics of natural images and the response properties of cortical cells. *Journal* of the Optical Society of America A, 4:2379–2394.

Hayes, B. (2005). Why W?. American Scientist, 93:104-109.

- Lee, H.-C., and Choe, Y. (2003). Detecting salient contours using orientation energy distribution. In *Proceedings of the* International Joint Conference on Neural Networks, 206–211. IEEE.
- Liu, X., and Wang, D. (2002). A spectral histogram model for texton modeling and texture discrimination. Vision Research, 42:2617–2634.

- Malik, J., Belongie, S., Shi, J., and Leung, T. K. (1999). Textons, contours and regions: Cue integration in image segmentation. In *ICCV(2)*, 918–925.
- Sarma, S., and Choe, Y. (2006). Salience in orientation-filter response measured as suspicious coincidence in natural images. In Gil, Y., and Mooney, R., editors, *Proceedings of the 21st National Conference on Artificial Intelli*gence(AAAI 2006), 193–198.
- Simoncelli, E. P., and Adelson, E. H. (1996). Noise removal via bayesian wavelet coring. In Proceedings of IEEE International Conference on Image Processing, vol. I, 379–382.

39-2