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What Is Common in These Images?
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What Is Common in These Images?

• In color, natural image, from the Kodak data set, ...

– What about the brightness intensity histogram?
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Brightness Intensity Histogram
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• They are very different!

• What is similar then?
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The Visual Cortical Response

• Retina: center-surround filter

• LGN (thalamus): center-surround filter

• Visual cortex: oriented Gabor filter5

Simulating Visual Cortical Response: Convolution

with Oriented Gabor Filters

• Oriented Gabor filters simulate visual cortical receptive fields.
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Visual Cortical Response (Simulated)

• This is (sort of) how the visual cortex responds to these images

(Gabor filtering [next slide]).

– Oriented edges are most prominently detected.

– Would the response histogram vary as much as the

brightness intensity histogram?
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Visual Cortical Response Histogram
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• The response (called orientation energyE) distributions are

similar across the board!

• Power law property is observed (this is already a well-known

result; Field 1987): f(x) = 1/xa (a > 0).
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YAPL:

Yet Another Power Law!

• Power law seems to be ubiquitous in nature and in human-made

artifacts:

– 957,000 documents returned by Google Scholar!

– Power law phenomena range from www topology, financial

market fluctuation, to word frequency and much more (see

e.g., Clauset et al. 2009).

• However, it is not often asked:

– What use is it?

– What fundamental mechanisms underlie such phenomena?
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Overview

1. Power law + Gaussian baseline = Human perceptual threshold.

2. Why the Gaussian baseline?

3. Deeper questions:

(a) Neural implementation

(b) Mathematical/statistical implications
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Part I:

Power Law + Gaussian Baseline

= Human Perceptual Threshold
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What to Make of the Power Law?
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• Insight: Comparing the power law distribution with a normal

distribution with the same variance can be useful. .

– Assumption: normal distribution can be a suitable baseline.

• The point L2 where h(E) becomes greater than g(E) may be

important, i.e., orientation energy is suspiciously high.
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Power Law vs. Human Perceptual Threshold
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• Can there be a relationship between the threshold ofE above

which humans see it as salient and the point L2?

– Experiment: Human participant selected threshold ofE so

that (1) contours are preserved as much as possible and (2)

noise reduced as much as possible.
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Checking the Hunch: Comparison to Human

Perceptual Threshold
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• There is a clear linear relationship (n = 31) between

– Human-selected threshold and

– L2, the intersection of h(E) and g(E).

14

Further Discoveries: L2 and Response Std. Dev.
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• Further, the raw standard deviation σ of the response distribution

is linearly related to L2.

– Question: Is there an analytical solution to

a 1
xb = c× exp(−x2

d
), where the constants a, b, c, and

d depend on σ? (more on this later)
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Using σ to Estimate Optimal E Threshold
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• Relating σ back to the human-chosenE threshold gives again a

linear relation:

Tσ = 1.37σ − 2176.59.

• Thus, instead of calculating the histogram, etc., we can simply

calculate the raw standard deviation σ to estimate the appropriate

E threshold. 16



Three Quantities

An unexpected correlation found among:

• Human-selected threshold.

• L2, point of intersection of response power law and Gaussian

baseline.

• σ, standard deviation of response power law.
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Application: Thresholding Cortical Response E

(a) Original Image (b) Thresholded Edges (c) Magnified (b)

• Using Tσ as a threshold gives good results, comparable to

humans’ preference.
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Thresholding Cortical Response E

• Original, human-selected, 85-percentile, and Tσ .
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Thresholding E: Limitations of Fixed Percentile

• Original, human-selected, 85-percentile, and Tσ .
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Thresholding E: Limitations of Global Thresholding

• Original, human-selected, 85-percentile, Tσ , and Tσ local.

• Estimating Tσ at a local scale solves the problem.
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Part I: Summary

• Visual cortical response exhibits a power law.

• Comparing the power law to a baseline normal distribution results

in a quantity (L2) that is linearly correlated with human

perceptual threshold.

• L2 is in turn linearly correlated with the standard deviation of the

power law.

• Straight-forward application possible (thresholding, salient edge

detection):

– Simple calculation of response variance is enough!
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Part II: Why the Gaussian Baseline?
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Why the Gaussian Baseline?

• The results are promising, but why?

• Why is the normal (Gaussian) distribution a reasonable choice as

a baseline?

– Central limit theorem?

– People commonly use it?
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Power Law, Gaussian Dist., vs. Suspicious

Coincidence

• What is the relationship between salience defined as

super-Gaussian and the conventional definition of

suspiciousness (Barlow 1994, 1989)?

P (A,B) > P (A)P (B),

whereA andB are pixels in an image.
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White-Noise Analysis

• In white-noise images, each pixel is independent, so, given any

pixel pair (A,B):

P (A,B) = P (A)P (B).

• Would we get a power law response?

– If the Gaussian baseline assumption was correct, since there

is no salient edge, the response distribution should be

Gaussian.
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Visual Response to White Noise Images
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• The orientation energy distribution is very close to a Gaussian,

especially near the highE values.

• Thus, the Tσ thresholding will not produce a meaningful

threshold.
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Use of White Noise Response as a Baseline

• Can we use the white-noise response as a baseline for

thresholdingE?: Yes!

• Generate white noise response, and scale it by σh/σr where

σh and σr are the STD in the natural image response and the

white noise response.

• Recalculate the response distribution (if necessary).
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New Baseline for Salience vs. Humans
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• Strong linearity is found between the new L2 and the human

selected threshold.

– ∗ This is much tighter than the Gaussian baseline

(r = 0.91)!
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New Baseline for Salience vs. σ
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• The same linearity between L2 and the σ is maintained.
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Part II: Summary

• Gaussian baseline corresponds to response distribution to white

noise images.

• In white noise images, each pixel is independent from the others.

• This relates to the idea of suspicious coincidence by Barlow

(1994)

• Threshold derived using the white-noise response distribution is

even more accurate than earlier results.
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Part III: Deeper Questions
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Neural Implementation

• The local (or even global) threshold calculation can be easily

implemented in a neural circuit:

σ2 =
∑
i,j

wijg(Vij),

wherewij are connection weights serving as normalization

constants, g(x) = x2, and Vij is the V1 response at location

i, j.

• The resulting value can be passed through another activation

function f(x) =
√
x.

f(σ2) =
√
σ2 = σ

• These are all plausible functions that can be implemented in a

biological neural network.
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Mathematical/Statistical Implications

Is there an analytical solution to a 1
xb = c× exp(−x2

d
)?

• This leads to another obscure yet surprisingly ubiquitous function

called the Lambert W functionW (x) which is defined as the

inverse of the following function:

x = W exp(W )

• The Lambert W function is popping up everywhere: delay

differential equations (with applications in population dynamics,

economics, control theory), projectile trajectory calculation,

voltage/current/resistance in a diode, etc. (see Hayes 2005 for a

review)–A déjà vu?

• Speculation: Power law, Gaussian, and Lambert W function are

deeply related.
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Power Law, Gaussian, and Lambert W function

Basically, x = ±ip
√
W (−q)

• How I found out: Wolfram Alpha (Mathematica, prior to that).
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Wrap Up

36



Related Work

• Malik et al. (Malik et al. 1999) used peak values of orientation

energy to define boundaries of regions of coherent brightness

and texture.

• The non-Gaussian nature of orientation energy (or wavelet

response) histograms has also been recognized and utilized,

especially in denoising and compression (Simoncelli and Adelson

1996).

• Other kinds of histograms, e.g., spectral histogram by Liu and

Wang (2002), or spatial frequency distributions (Field 1987), may

be amenable to a similar analysis.
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Conclusions

• Visual cortical response shows a power law.

• Power law compared to Gaussian baseline gives accurate

predictor for human perceptual threshold.

• Standard deviation of the response is a simple yet powerful

approximation.

• Gaussian baseline found to be related to suspicious coincidence.

• Power law, Gaussian baseline, and Lambert W function intricately

interrelated.

• Lesson: Power law is there for a reason, and it can greatly

simplify things downstream.
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