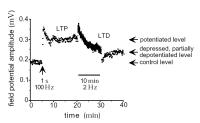
Synaptic Plasticity

Dayan and Abbott (2001) Chapter 8

Instructor: Yoonsuck Choe; CPSC 644 Cortical Networks

1

Biophysics of Synaptic Plasticity



- Plasticity is found in many brain regions: hippocampus, cortex, cerebellum, etc.
- Plot above shows field potential recordings from CA1 region in rat hippocampus.
 - High-frequency stimulation leads to long-term potentiation (LTP).
 - Low-frequency stimulation leads to long-term depression (LTD).
 - Consistent with Hebb rule.
 - Postsynaptic concentration of ${\rm Ca}^{2+}$ ions play a role in LTP and LTD.

Introduction

- Activity-dependent synaptic plasticity:
 - underlies learning and memory, and
 - plays a crucial role in neural circuit development.
- Donald Hebb: Hebb rule for synaptic plasticity (1949)
 - neuron A contributes to firing of neuron B, then
 - synapse between A and B should be strengthened.
 - Subsequent activation of A will lead to stronger activation of B.
- Hebb's rule only increases synaptic strength. It can be generalized to weaken strength if neuron A repeatedly fails to activate B.

2

Functional Modes of Synaptic Plasticity

Types of learning:

- Unsupervised learning
- Supervised learning
- Reinforcement learning

Types of synaptic plasticity:

- Hebbian synaptic plasticity
- Non-Hebbian synaptic plasticity: e.g., anti-Hebbian (decrease strength when co-activated).

Stability and Competition

- Increasing synaptic plasticity is a positive feedback process:
 Uncontrolled growth possible if unchecked.
- Dealing with unbounded growth:
 - Impose a saturation constraint: $0 \le w \le w_{\max}$: Possible problem of every weight turning w_{\max} .
 - Synaptic competition: Some weaken while some strengthen.

5

Basic Hebb Rule: Correlation-Based

Simplest form has:

$$\tau_w \frac{d\mathbf{w}}{dt} = v\mathbf{u},$$

where au_w is the time constant that controls the rate of change in w (learning rate).

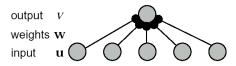
• Ensemble averaging $(\langle \cdot \rangle)$ over the inputs:

$$\tau_w \frac{d\mathbf{w}}{dt} = \langle v\mathbf{u} \rangle$$

$$au_w rac{d\mathbf{w}}{dt} = \mathbf{Q} \cdot \mathbf{w} \text{ or } au_w rac{dw_b}{dt} = \sum_{b'=1}^{N_u} Q_{bb'} w_{b'}, \text{ where}$$

$$\mathbf{Q} = \langle \mathbf{u}\mathbf{u} \rangle$$
 or $Q_{bb'} = \langle u_b u_{b'} \rangle$.

Network Model with Firing Rate Neurons



from Chapter 7

- Input vector u
- Weight vector w
- ullet Output (postsynaptic activity) v

$$\tau_r \frac{dv}{dt} = -v + \mathbf{w} \cdot \mathbf{u} = -v + \sum_{b=1}^{N_u} w_b v_b,$$

or, after reaching steady state (set the above to 0):

$$v = \mathbf{w} \cdot \mathbf{u}$$

Unbounded Growth in Basic Hebb Rule

• Length of weight vector:

$$|\mathbf{w}|^2 = \mathbf{w} \cdot \mathbf{w} = \sum_b w_b^2.$$

Dot product of

$$\tau_w \frac{d\mathbf{w}}{dt} = v\mathbf{u}$$

and w gives:

$$\tau_w \frac{d|\mathbf{w}|^2}{dt} = 2v^2$$
, given

$$\frac{d|\mathbf{w}|^2}{dt} = 2\mathbf{w} \cdot \frac{d\mathbf{w}}{dt} \text{ and } \mathbf{w} \cdot \mathbf{u} = v.$$

• Note $v \ge 0$, so the above always increases (unless v = 0).

Discrete Updating Rule for Hebbian Learning

Commonly used discrete update rule is:

$$\mathbf{w} \to \mathbf{w} + \epsilon \mathbf{Q} \cdot \mathbf{w},$$

where ϵ is analogous to $\frac{1}{\tau_w}$ in the continuous version.

• Even simpler implementation is:

$$\mathbf{w} \to \mathbf{w} + \epsilon v \mathbf{u}$$

i.e., no ensemble averaging.

9

Depression under Covariance Rule

 \bullet Homosynaptic depression: depression when nonzero input and $v<\theta_v$

$$\tau_w \frac{d\mathbf{w}}{dt} = (v - \theta_v)\mathbf{u}.$$

 $\bullet\,$ Heterosynaptic depression: depression when input is inactive and v>0

$$\tau_w \frac{d\mathbf{w}}{dt} = v(\mathbf{u} - \boldsymbol{\theta}_u)$$

 Implicit point: No input or output activity is required for LTD to happen.

Covariance Rule

 We want to allow a single rule to allow both increase and decrease in synaptic weight.

$$\tau_w \frac{d\mathbf{w}}{dt} = (v - \theta_v)\mathbf{u},$$

where θ_v is a threshold. Synaptic weight will decrease if $v<\theta_v$ and increase if $v>\theta_v$.

• An alternative is to put the threshold on the input side:

$$\tau_w \frac{d\mathbf{w}}{dt} = v(\mathbf{u} - \boldsymbol{\theta}_u),$$

• If $\boldsymbol{\theta}_u = \langle \mathbf{u} \rangle$, we get

$$\tau_w \frac{d\mathbf{w}}{dt} = \mathbf{C} \cdot \mathbf{w}, \text{ where}$$

$$\mathbf{C} = \langle (\mathbf{u} - \langle \mathbf{u} \rangle) (\mathbf{u} - \langle \mathbf{u} \rangle) \rangle_{\!\!\! 10}^{} = \langle \mathbf{u} \mathbf{u} \rangle - \langle \mathbf{u} \rangle^2 = \langle (\mathbf{u} - \langle \mathbf{u} \rangle) \mathbf{u} \rangle.$$

Instability of the Covariance Rule

• The covariance rule is unstable despite the threshold:

$$\tau_w \frac{d|\mathbf{w}|^2}{dt} = 2v(v - \langle v \rangle),$$

where the time average of RHS is proportional to

$$\langle v^2 \rangle - \langle v \rangle^2,$$

which is positive (it's the variance of v).

BCM Rule

Bienenstock, Cooper, and Munro (1982).

• Synaptic plasticity requires both pre- and postsynaptic activity:

$$\tau_w \frac{d\mathbf{w}}{dt} = v\mathbf{u}(v - \theta_v).$$

- Unstable like Hebb rule if θ_v is kept fixed.
- Condition for stability is:

$$\tau_{\theta} \frac{d\theta_{v}}{dt} = v^{2} - \theta_{v},$$

where threshold adaptation rate τ_{θ} is typically smaller than τ_{w} .

ullet Sliding threshold implements synaptic competition: Increase in one synaptic weight will increase output v, thus it will increase threshold, making other synpases hard to adapt.

13

Synaptic Normalization: Subtractive

• Add a subtractive term in weight update:

$$\tau_w \frac{d\mathbf{w}}{dt} = v\mathbf{u} - \frac{v(\mathbf{n} \cdot \mathbf{u})\mathbf{n}}{N_u},$$

where N_u is the length of \mathbf{u} , and $\mathbf{n}=(1,1,1,...1)$, so $\sum w_b = \mathbf{n} \cdot \mathbf{w}$.

• This is a rigid constraint, since the sum of weights $\mathbf{n} \cdot \mathbf{w}$ does not change:

$$\tau_w \frac{d\mathbf{n} \cdot \mathbf{w}}{dt} = v\mathbf{n} \cdot \mathbf{u} \left(1 - \frac{\mathbf{n} \cdot \mathbf{n}}{N_u} \right) = 0.$$

• Biological basis is unclear.

Preventing Unbounded Growth: Normalization

- Directly work on the weights rather than altering the threshold.
- Assumption is that increase in one synaptic weight should be balanced by the decrease in other synaptic weights.
- Thus, global constraints are needed:
 - Hold total sum of weights constant.
 - Constrain the sum of squares of the weights.

14

Synaptic Normalization: Multiplicative

• Oja's rule (Oja, 1982)

$$\tau_w \frac{d\mathbf{w}}{dt} = v\mathbf{u} - \alpha v^2 \mathbf{w},$$

with a positive constant α .

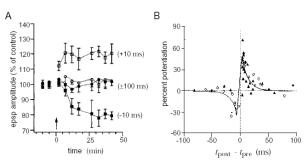
- It is based more on a theoretical argument than biological.
- Stability can be analyzed as before:

$$\tau_w \frac{d|\mathbf{w}|^2}{dt} = 2v^2 (1 - \alpha |\mathbf{w}|^2).$$

The steady state value of $|\mathbf{w}|^2$ becomes $1/\alpha$ (set the RHS to 0 and solve for $|\mathbf{w}|^2$).

• In other words, the length of the weight vector is held constant.

Timing-Based Rules



- Plasticity is time-dependent: Spike Timing Dep. Plast. (STDP)
- ullet Presynaptic spike time $t_{
 m pre}$ and postsynaptic spike time $t_{
 m post}$:
 - If post fires first then pre, $t_{\rm post}-t_{\rm pre}<0$: pre did not cause post to fire.
 - If pre fires first then post, $t_{
 m post}-t_{
 m pre}>0$: pre did cause post to fire.

Unsupervised Learning

- Variants of Hebbian learning can be understood in the context of unsupervised learning.
- Major area of research: cortical map formation.
 - Orientation map, ocular dominance map, spatial frequencey map, etc. etc.
 - Activity-dependent (learning) and/or activity-independent (genetically determined)?

Timing-Based Rule

STDP applied to firing rate models:

$$\tau_w \frac{d\mathbf{w}}{dt} = \int_0^\infty d\tau (H(\tau)v(t)\mathbf{u}(t-\tau) + H(-\tau)v(t-\tau)\mathbf{u}(t)),$$

where $H(\tau)$ takes a shape similar to the plot B in the previous page, depending on the sign of τ (sign $(H(\tau)) = \text{sign}(\tau)$).

• STDP is more naturally applied to spiking neuron models.

18

Hebbian Learning and Principal Eigenvector

Diagonalize the correlation matrix Q:

$$\mathbf{Q} \cdot \mathbf{e}_{\mu} = \lambda_{\mu} \mathbf{e}_{\mu}$$

where ${\bf e}_\mu$ is an eigenvector (mutually orthogonal) and λ_μ is an eigenvalue ($\mu=1,2,...,N_u$).

- For correlation and covariance matrices, all eigenvalues are real and nonnegative.
- We can express any N_u -dimensional vector as a linear combination of the N_u eigenvectors \mathbf{e}_{μ} . So,

$$\mathbf{w}(t) = \sum_{\mu=1}^{N_u} c_{\mu}(t) \mathbf{e}_{\mu},$$

where c_{μ} are the coefficients.

Principal Eigenvector (cont'd)

From

$$\mathbf{w}(t) = \sum_{\mu=1}^{N_u} c_{\mu}(t) \mathbf{e}_{\mu},$$

$$\mathbf{w} = [c_1, c_2, ... c_{\mu} ... c_{N_u}] \left[egin{array}{cccc} [& \mathbf{e}_1 &] \\ [& \mathbf{e}_2 &] \\ & ... \\ [& \mathbf{e}_{\mu} &] \\ & ... \\ [& \mathbf{e}_{N_u} &] \end{array}
ight] = \mathbf{c} \mathbf{E}$$

we get

$$c_{\mu}(t) = \mathbf{w}(t) \cdot \mathbf{e}_{\mu}$$

since

$$\mathbf{w}\mathbf{E}^{-1} = \mathbf{c}$$
, and $\mathbf{E}^{-1} = \mathbf{E}^{T}$.

21

Principal Eigenvector (cont'd)

$$\mathbf{w}(t) = \sum_{\mu=1}^{N_u} \exp\left(\frac{\lambda_{\mu} t}{\tau_w}\right) (\mathbf{w}(0) \cdot \mathbf{e}_{\mu}) \, \mathbf{e}_{\mu}.$$

• Thus, for large t, the vector term with the highest λ_{μ} factor $(\mu=1)$ if eigenvalues have been sorted) will dominate, so

$$\mathbf{w} \propto \mathbf{e}_1$$
.

Finally, we get

$$v \propto \mathbf{e}_1 \cdot \mathbf{u}$$

which is the projection of the input vector along the principal eigenvector of the correlation/covariance matrix.

Principal Eigenvector (cont'd)

Plugging

$$\mathbf{w}(t) = \sum_{\mu=1}^{N_u} c_{\mu}(t) \mathbf{e}_{\mu} \quad \text{into} \quad \tau_w \frac{d\mathbf{w}}{dt} = \mathbf{Q} \cdot \mathbf{w} \quad \text{we get}$$

$$\tau_w \sum_{\mu=1}^{N_u} \frac{dc_{\mu}(t)}{dt} \mathbf{e}_{\mu} = \mathbf{Q} \cdot \sum_{\mu=1}^{N_u} c_{\mu}(t) \mathbf{e}_{\mu}.$$

Multiply both sides with ${f e}_{
u}$, and ${f e}_{\mu}\,\cdot\,{f e}_{
u}\,=\,\delta_{\,\mu\,
u}$:

$$\tau_{w}\frac{dc_{\mu}}{dt} = c_{\mu}(t)(\mathbf{Q}\cdot\mathbf{e}_{\mu})\cdot\mathbf{e}_{\mu} \ \text{becomes} \ \tau_{w}\frac{dc_{\mu}}{dt} = c_{\mu}(t)\lambda_{\mu}\mathbf{e}_{\mu}\cdot\mathbf{e}_{\mu}.$$

Since $\mathbf{Q}\mathbf{e}=\lambda\mathbf{e}$

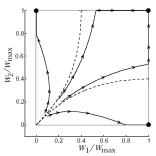
$$au_w rac{dc_{m{\mu}}}{dt} = c_{m{\mu}}(t) \lambda_{m{\mu}}, \;\; ext{so, we get}$$

$$c_{\mu}(t) = c \exp\left(\frac{\lambda_{\mu} t}{\tau_{w}}\right), \text{ where } \mathbf{w}(0) \cdot \mathbf{e}_{\mu} = c_{\mu}(0), \text{ so } c = \mathbf{w}(0) \cdot \mathbf{e}_{\mu}.$$

$$\mathbf{w}(t) = \sum_{\mu=1}^{N_u} \exp\left(\frac{\lambda_{\mu} t}{\tau_w}\right) (\mathbf{w}(0) \cdot \mathbf{e}_{\mu}) \, \mathbf{e}_{\mu}.$$

22

Principal Eigenvector: Issues



Principal eigenvector
$$\mathbf{e}_1 = (1,-1)/\sqrt{2}$$

- The proportionality relation $v \propto \mathbf{e_1} \cdot \mathbf{u}$ conceals the large exponential factor, which can grow without bound.
- Saturation constraint can help, but it can prevent the weight update to converge to the principal eigenvector (see figure above), depending on the initial condition.

Principal Eigenvector: Use of Oja's Rule

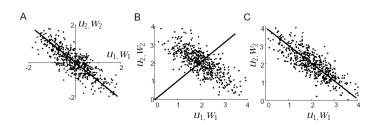
• Oja's rule (Oja, 1982) can be used to prevent unlimited growth:

$$\tau_w \frac{d\mathbf{w}}{dt} = v\mathbf{u} - \alpha v^2 \mathbf{w}.$$

• The rule gives $\mathbf{w} = \mathbf{e}_1/\sqrt{\alpha}$ as $t \to \infty$.

25

Hebbian Learning for PCA



- A: correlation rule, zero mean
- B: correlation rule, non-zero mean
- C: covariance rule, non-zero mean.

Principal Eigenvector: Use of Subtractive Normalization

Averaging

$$\tau_w \frac{d\mathbf{w}}{dt} = v\mathbf{u} - \frac{v(\mathbf{n} \cdot \mathbf{u})\mathbf{n}}{N_u},$$

over input samples gives:

$$\tau_w \frac{d\mathbf{w}}{dt} = \mathbf{Q} \cdot \mathbf{w} - \frac{(\mathbf{w} \cdot \mathbf{Q} \cdot \mathbf{n})\mathbf{n}}{N_u}.$$

- Growth of ${\bf w}$ is unaffected by the second term if ${\bf e}_{\mu}\cdot{\bf n}=0$. If ${\bf e}_{\mu}\cdot{\bf n}\neq 0$ weight will grow without bound.
- If principal eigenvector of ${\bf Q}$ is proportional to ${\bf n}$, ${\bf Q}\cdot{\bf e}_1-({\bf e}_1\cdot{\bf Q}\cdot{\bf n}){\bf n}/N=0$, so principal eigenvector is unaffected by the learning rule. Also, ${\bf e}_{\mu}\cdot{\bf n}=0$ for $\mu\geq 2$, so

$$\mathbf{w}(t) = (\mathbf{w}(0) \cdot \mathbf{e}_1)\mathbf{e}_1 + \sum_{\substack{\mu = 2 \\ 26}}^{N_u} \exp\left(\frac{\lambda_{\mu} t}{\tau_w}\right) (\mathbf{w}(0) \cdot \mathbf{e}_{\mu})\mathbf{e}_{\mu}.$$