Synaptic Plasticity

Dayan and Abbott (2001) Chapter 8

Instructor: Yoonsuck Choe; CPSC 644 Cortical Networks

Biophysics of Synaptic Plasticity

0.4

3 LTP
03 “;w L0 <€ potentiated level
) " ,ﬂﬁ;w < depressed, partially
¥

0.2 depotentiated level
- < control level

0.1 10 min

1s
100Hz 2Hz

field potential amplitude (mV)

04
0 10 20 30 40

time (min)

e Plasticity is found in many brain regions: hippocampus, cortex, cerebellum,
etc.

e Plot above shows field potential recordings from CA1 region in rat
hippocampus.

High-frequency stimulation leads to long-term potentiation (LTP).

Low-frequency stimulation leads to long-term depression (LTD).

Consistent with Hebb rule.

Postsynaptic concentration of ca”™ ions play a role in LTP and LTD.
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Introduction

e Activity-dependent synaptic plasticity:
— underlies learning and memory, and

— plays a crucial role in neural circuit development.

e Donald Hebb: Hebb rule for synaptic plasticity (1949)
— neuron A contributes to firing of neuron B, then
— synapse between A and B should be strengthened.

— Subsequent activation of A will lead to stronger activation of B.

e Hebb’s rule only increases synaptic strength. It can be
generalized to weaken strength if neuron A repeatedly fails to
activate B.

Functional Modes of Synaptic Plasticity

Types of learning:

e Unsupervised learning

e Supervised learning

e Reinforcement learning
Types of synaptic plasticity:

e Hebbian synaptic plasticity

o Non-Hebbian synaptic plasticity: e.g., anti-Hebbian (decrease
strength when co-activated).



Stability and Competition Network Model with Firing Rate Neurons

output v
® Increasing synaptic plasticity is a positive feedback process: weights W
Uncontrolled growth possible if unchecked. input  u

e Dealing with unbounded growth:
from Chapter 7

— Impose a saturation constraint: 0 < w < wWmax: Possible
. . e Input vector u
problem of every weight turning wmax-

. " . e Weigh
— Synaptic competition: Some weaken while some strengthen. eight vector w

e Output (postsynaptic activity) v

dv N,
Tra :—U+W~u:—v+bzlwbvb,

or, after reaching steady state (set the above to 0):

v=WwW-u
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Basic Hebb Rule: Correlation-Based Unbounded Growth in Basic Hebb Rule
e Simplest form has: e Length of weight vector:
dw
Tw— = vu 2 2
Ydt ’ |w| :w-w:Zwb.
where T4, is the time constant that controls the rate of change in b
w (learning rate). Dot product of
_ . dw
e Ensemble averaging ((-)) over the inputs: Tw Fe vu
- d_W — (vu) and w gives:
Yt d|w|? 2
Tw = 207, given
d d N, dt
W Wy 2
Tw— =Q W or 7y — = wyr, Where dlw w
Yot Q Yodt Zbe/ o [wl =2w - — and w - u = v.
b'=1 dt dt
Q = (uu) or Qpp = (upuy). e Note v > 0, so the above always increases (unless v = 0).



Discrete Updating Rule for Hebbian Learning

Commonly used discrete update rule is:
w— W+ eQ - w,
where € is analogous to % in the continuous version.
Even simpler implementation is:
W — W + evu,

i.e., no ensemble averaging.

Depression under Covariance Rule

Homosynaptic depression: depression when nonzero input and

v < 0Oy

d
Tw—w = (v —0y)u.

dt
Heterosynaptic depression: depression when input is inactive and

v >0
dw

/7— [
Ydt

Implicit point: No input or output activity is required for LTD to

=v(u— 0,)

happen.
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Covariance Rule

We want to allow a single rule to allow both increase and
decrease in synaptic weight.

Tw% - (,U - Qy)u,
where 0,, is a threshold. Synaptic weight will decrease if v < 0,
and increase if v > 0,,.

An alternative is to put the threshold on the input side:

dw
w - . — U. - eu 9
Tw v( )
If @, = (u), we get
d
Tw—w = C - w, where
dt

Instability of the Covariance Rule

The covariance rule is unstable despite the threshold:
d|w|?
dt
where the time average of RHS is proportional to
2 2
(v7) = ()7,

which is positive (it's the variance of v).

— 2v(v — (v)),

Tw
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BCM Rule

Bienenstock, Cooper, and Munro (1982).

® Synaptic plasticity requires both pre- and postsynaptic activity:
dw

At

e Unstable like Hebb rule if 6, is kept fixed.

=ovu(v — 0y).

e Condition for stability is:
doy,
To E = v — Uy,
where threshold adaptation rate 7y is typically smaller than 7.

e Sliding threshold implements synaptic competition: Increase in
one synaptic weight will increase output v, thus it will increase
threshold, making other synpases hard to adapt.
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Synaptic Normalization: Subtractive

® Add a subtractive term in weight update:

where N, is the length of u, andn = (1,1, 1,...1), so
dwp=n-w.

e This is a rigid constraint, since the sum of weights nn - w does not
change:

dn -w n-n
Tw —-—7vn-u 1— :0
dt ( Nu)

e Biological basis is unclear.
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Preventing Unbounded Growth: Normalization

e Directly work on the weights rather than altering the threshold.

o Assumption is that increase in one synaptic weight should be
balanced by the decrease in other synaptic weights.
e Thus, global constraints are needed:
— Hold total sum of weights constant.

— Constrain the sum of squares of the weights.
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Synaptic Normalization: Multiplicative

e QOja’s rule (Oja, 1982)

dw 5
Tw—— = VU — QU W,

dt

with a positive constant cv.
e |tis based more on a theoretical argument than biological.

e Stability can be analyzed as before:
d|w|?
dt

The steady state value of |[w|? becomes 1/« (set the RHS to 0

Tw = 202%(1 — a|w|?).

and solve for [w|?).

e In other words, the length of the weight vector is held constant.
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Timing-Based Rules
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e Plasticity is time-dependent: Spike Timing Dep. Plast. (STDP)

e Presynaptic spike time tpre and postsynaptic spike time tpost:

— If post fires first then pre, tpost — tpre < 0:
pre did not cause post to fire.
— If pre fires first then post, tpost — tpre > 0:

pre did cause post to fire.
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Unsupervised Learning

e Variants of Hebbian learning can be understood in the context of

unsupervised learning.

o Major area of research: cortical map formation.

— Orientation map, ocular dominance map, spatial frequencey
map, etc. etc.

— Activity-dependent (learning) and/or activity-independent
(genetically determined)?
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Timing-Based Rule

STDP applied to firing rate models:

dw
o2
Ydt

>
:/ dr(H(m)v(t)u(t—7)+H(—7)v(t—7)u(t)),
0
where H(T) takes a shape similar to the plot B in the previous
page, depending on the sign of 7 (sign(H (7)) = sign(7)).

STDP is more naturally applied to spiking neuron models.
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Hebbian Learning and Principal Eigenvector
Diagonalize the correlation matrix Q:

where e, is an eigenvector (mutually orthogonal) and A, is an
eigenvalue (1 = 1,2, ..., Ny).

For correlation and covariance matrices, all eigenvalues are real
and nonnegative.

We can express any /V,,-dimensional vector as a linear
combination of the [V,, eigenvectors €. So,

N’M
w(t)= > cult)ey.
p=1

where ¢, are the coefficients.
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Principal Eigenvector (cont’d) Principal Eigenvector (cont’d)

e From ® Plugging

Nu % dw
t) = t int —_— = . t
W(t) _ Z c“(t)eu, w(t) MZlc'u( Jep into T p” Q - w wege
pn=1
Nu de,, () Nu
~ - Tw L = . (T VR
[ el ] }Lzl dt e’ Q /l‘gl Cl ( )El
[ €2 ] Multiply both sides with e, and e, - € = &y p:
w = [c1,¢ Cp---CN,, | =cE dep dep
1,62, .-.Cp---CNy, Tw—— = cp(t)(Q - ey) - ey becomes Ty =cpu(t)Apey ~ey-
[ €, ] dt
Since Qe = e
d
Tw C = cy (t)Ay,, so, weget
L[ eN., ] 0t “w m
e get by
wes cp(t) = cexp (Lt> , where w(0)-e, = ¢4 (0), so c = w(0)-ey.
cu(t) = w(t) - e, -
since Ny Apt
wE! = c, and E !'=©g"T. Wi = E::l P (:) (w(0) - ep) ep
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Principal Eigenvector (cont’d) Principal Eigenvector: Issues
1
0.8
N,
< >\/'Lt go,s
w(t) = exp (— (w(0)-eu)eu. £
pn=1 Tw £ 04
0.
e Thus, for large ¢, the vector term with the highest >‘u factor !
(i = 1 if eigenvalues have been sorted) will dominate, so !

0 0.2 0.4 0.6 0.8 1

Wl/Wmax
W X €e].
Principal eigenvector e; = (1, —1)/+/2
e Finally, we get e The proportionality relation v oc €1 - u conceals the large
vXer-u exponential factor, which can grow without bound.

which is the projection of the input vector along the principal e Saturation constraint can help, but it can prevent the weight

eigenvector of the correlation/covariance matrix. update to converge to the principal eigenvector (see figure
above), depending on the initial condition.
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Principal Eigenvector: Use of Oja’s Rule

o Oja’s rule (Oja, 1982) can be used to prevent unlimited growth:

dw

Tw— = VU — QU W.
dt

e Therulegives w = e1 /y/aast — oo.
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Hebbian Learning for PCA

o A: correlation rule, zero mean
o B: correlation rule, non-zero mean

o C: covariance rule, non-zero mean.
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Principal Eigenvector: Use of Subtractive

Normalization
® Averaging
dw v(n-u)n
Tw = vu — )
dt N,

over input samples gives:

dw _(W-Q-n)n.

Tw—T = W
T Q

Ny

e Growth of w is unaffected by the second termife,, - n = 0. If
e, - n # 0 weight will grow without bound.

e If principal eigenvector of @ is proportional to n,

Q- e —(e1 - Q -n)n/N = 0, so principal eigenvector is
unaffected by the learning rule. Also, e, - n = 0 for 1 > 2, so

Nu
w(t) = (w(0) - e1)e; + Z exp

=2
'8

(3

ut

w

) (w(0) - ee.



