
Model Neurons: Neuroelectronics

(Part I)
Dayan and Abbott (2001) Chapter 5 and Appendix A.4.

• Basic electrical circuits.

• Passive membrane model.

• Single compartment model.

• Integrate-and-fire neurons.

• Hodgkin-Huxley model.

• Synaptic coductances.

Instructor: Yoonsuck Choe; CPSC 644 Cortical Networks
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Electrical Circuits

• Ohm’s law:

VR = IRR,

V: voltage, I: current, R: resistence.

• Charge across a capacitor:

CVC = QC

C
dVC

dt
=

dQC

dt
= IC,

V: voltage, Q: charge, I: current.
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Electrical Circuits: Serial Resistors

Kirchhoff’s current law: At a node, all currents sum to zero (or, sum of

incoming = sum of outgoing currents).

• Example C: at node next to V2, I1 = I2. Thus:

V1 − V2 = I1R1, V2 − 0 = I2R2

V1 = I1(R1 + R2), V2 = I2R2 = I1R2

V2 =
V1R2

R1 + R2
.
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Electrical Circuits: Parallel Resistors

At the node next to V , Ie = I1 + I2.

I1 =
V

R1
, I2 =

V

R2

Ie =
V

R1
+

V

R2
=

R1 + R2

R1R2
V

Thus, total resistence of parallel resistors is
R1R2

R1+R2
.
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Resistor-Capacitor Circuit (I)

Case A: No external current source: IR + IC = 0.

IR + IC =
V − 0

R
+ C

dV

dt
= 0

C
dV

dt
= −V

R
which is a homogeneous linear differential equation, and the general
solution is (straight-forward integration after separating the variables):
V (t) = V (0) exp(−t/RC).
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Resistor-Capacitor Circuit (II)

Case B: With external current source: IR + IC = Ie.

IR + IC =
V − E

R
+ C

dV

dt
= Ie

C
dV

dt
=

E − V

R
+ Ie

which is a nonhomogeneous linear differential equation, and the
general solution is: V (t) = V∞ + (V (0)− V∞) exp(−t/τ).
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Resistor-Capacitor Circuit (II, Cont’d)

V 8

V(0)

V

t

The steady state of the membrane equation is:

C
dV

dt
=

E − V

R
+ Ie = 0,

V = E + IeR,

which we define as V∞ = E + IeR, and the time constant is
τ = RC , which gives the equation in the previous page:

V (t) = V∞ + (V (0)− V∞) exp(−t/τ).

For the solution, first get the general solution Vh for the homogeneous

case and set V = Vh · u, where u is a dummy variable. Solve for V .
7

Single Compartment Model

• V : membrane potential

• rm: specific membrane resistance

• cm: specific membrane capacitance

• Ie: input current

• Conductance: reciprocal of resistance, denoted g.
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Single Compartment Model: Circuit

• Leakage current: iL = ḡL(V − EL).

• Membrane current: im =
P

i gi(V − Ei).

• Input current: Ie/A.

• Current across capacitor: cm
dV
dt

= IC.
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Single Compartment Model: Equation

Incoming: Ie/A; Outgoing: all the rest. So, we get:

Ie

A
= cm

dV

dt
+

X
i

gi(V − Ei),

which becomes:

cm
dV

dt
= −im +

Ie

A
.
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Integrate and Fire Models

• Basically an RC circuit with the R-part serving as the leakage:

cm
dV

dt
= −ḡL(V − EL) +

Ie

A
.

• Multiplying both sides with rm gives

(rm = 1/ḡL, τm = rmcm, Rm = rm/A):

τm
dV

dt
= EL − V + RmIe.

When Ie = 0, steady state voltage becomes V = EL, which is

the resting membrane potential (Vrest).

• When V reaches a threshold Vth, generate a spike and reset the

membrane potential to Vrest.
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Integrate and Fire Models: Analytic Solution

• Exact solution gives:

V (t) = EL+RmIe+(V (0)−EL−RmIe) exp(−t/τm),

which is the same as in page 7.

• V∞ = EL + RmIe, and this value should be greater than the

threshold Vth for the neuron to fire at all. Given a fixed EL and

Rm, the only thing that can change V∞ is then the input current

Ie.

• Given a constant input current Ie that allows spiking, the spiking

frequency can be analytically calculated.

• First, calculate the time to first spike, when V (t) = Vth with

V (0) = Vrest, and solve for t.
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Integrate and Fire Models: Firing Rate

• The calculation comes out to:

tisi = τm ln

„
RmIe + EL − Vrest

RmIe + EL − Vth

«
.

• Since the neuron will fire every tisi time units, this gives the

“inter-spike interval” (or ISI).

• Thus, firing occurs with a period of tisi, and so the firing

frequency is risi = 1/tisi.

• Note again that Vth < V∞ = EL + RmIe must hold.

Otherwise, no spikes.
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Integrate and Fire Model: Firing Rate

• Plot shows risi dependent on the input current (in INF vs. real

data), and real neuron vs. INF firing.

• Without spike adaptation, INF fits the real data well (black dots).

• Spike adaptation means dynamic change in firing rate as a

neuron keeps firing.
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Integrate and Fire Model

• INF model with a fluctuating driving input is shown.

• The spikes (the long peaks) are shown just as a visualization, and they are

not represented in the equation.

• Usually simple numerical integration is used for the simulation (use Taylor
series expansion and drop higher-order terms):

τm
∆V

∆t
= EL − V (t) + RmIe(t)

∆V =
(EL − V (t) + RmIe(t))

τm
∆t

V (t + ∆t) = V (t) + ∆V.15


