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What is Texture?

• Statistical definition (Beck 1983; Zhu et al., 1999)

• Surface characteristics (Urdang, 1968)

• Texton theory (Julesz and Bergen 1982)
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The Nature of Texture: Visual?

• Most previous works treat texture as a vision

problem, and this seems quite natural (e.g., Malik

and Perona, 1990).

• However, a deeper thought leads us into a new

direction.
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Texture in Nature (1/2)

• A mixed texture (left), with two different component

textures (middle & right).

• Looks distinctly visual.

• However, ...

4



Texture in Nature (2/2)

• Texture is a surface property: Surfaces of 3D objects

usually have a uniform texture.

• Typical texture segmentation problem arises through

occlusion.

• Is the nature of texture fundamentally tactile?
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Links Between Vision and Touch

Chen, Han, Poo, Dan, PNAS (2007) DiCarlo et al., J Neurosci (1998)

• 2D sensory surface: Retina vs. skin.

• Similar receptive field structure (with differences!).

– Receptive field: Part of sensory surface sensitive

to stimulus, especially to a specific pattern.
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Research Questions

Relationship between texture and tactile RFs:

1. Can tactile RFs outperform visual RFs in texture

tasks?

2. How are tactile RFs related to texture in a cortical

development context?

3. Is the representational power of tactile RFs higher

than visual RFs in texture tasks?
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Overview

1. Performance: Tactile RF vs. Visual RF

2. Development: Self-organization of TRF and VRF

3. Analysis: Manifold analysis of TRF and VRF
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Part I: Performance
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Task: Texture Boundary Detection

• Six sets of texture inputs.

• Boundary vs. non-boundary.

• Task is to detect presence of boundary in the middle.

10

VRF and TRF Models

• VRF (Gabor) and TRF similar, with slight difference.

• Dynamic inhibitory component in TRF (dependent

on scanning direction).
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Methods

Texture boundary detection task:

• Generate response vectors using TRF & VRF filters.

• Train backprop network for classification.

• Voting based on multiple sample positions.
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Results

 0

 20

 40

 60

 80

 100

 1  2  3  4  5  6

Cl
as

sif
ica

tio
n 

Ra
ge

 (%
) TRF

VRF

• TRF response vectors significantly better than VRF

for representing texture boundary.
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TRF vs. VRF Response Vectors

TRF response VRF response

Why does TRF outperform VRF?

• Response vectors from TRF emphasize the

boundary.
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LDA of Response Vectors
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Why does TRF outperform VRF?

• Linear Discriminant Analysis on response vectors.

• LDA distribution for TRF more clearly separated.
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Summary (Part I)

• Tactile RF response is better suited for texture

boundary detection tasks than visual RF response.

• TRF response representation more separable than

VRF.

• Suggests an interesting link between texture and

touch.
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Part II: Development
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Cortical Organization

Kandel et al. (2000)

• The cerebral cortex has a similar organization overall (6-layer

architecture).

• Same developmental rule may govern all cortical regions:

– E.g., visual development in the auditory cortex of rewired

animal (von Melchner et al. 2000)
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Cortical Development Model
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(Miikkulainen et al. 2005)

• Input-driven self-organization

(Hebbian learning).

• Model of visual-cortical develop-

ment and function.

• Can be applicable to other sen-

sory modalities.

• http://topographica.org
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Methods

• Self-organize LISSOM with two kinds of inputs:

– Texture-like

– Natural-scene-like

• Observe resulting RF structure.
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Methods (cont’d)

• Use LISSOM direction-map model to learn spatiotemporal RFs.

• Scan across input, and present input samples in the sequence.

• Scanning simulates gaze (vision) or finger tip movement (touch).
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Methods: Inputs
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• Natural scene (top)

• Texture (bottom): note that there are multiple scales.
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Results: Receptive Fields

RF from Texture RF from Natural scene

• RFs self-organized with texture-like inputs show

TRF-like properties.

• RFs self-organized with natural-scene-like inputs

show VRF-like properties.
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Results: Map

RF from Texture RF from Natural scene

• Texture-like inputs→ TRF-like properties.

• Natural-scene-like inputs→ VRF-like properties.
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Results: Orientation Map

From Texture From Natural scene

• Both show orientation-map similar to those found in

the visual cortex, but the texture-based map shows

lower selectivity (next slide).
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Results: Orientation Selectivity

From Texture From Natural scene

• Texture-based map shows lower selectivity (i.e., RFs

are less line-like and more blobby).
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Response Properties of RFs

From Texture From Natural scene

• Both RFs give sparse response to the input.

• Both show power-law property.
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Summary (Part II)

• Texture-like (nat. scene-like) input leads to TRF-like

(VRF-like) RFs with a general cortical development

model (LISSOM).

• Response properties of these RFs are similar, to

their respective input type, suggesting a possible

common post-processing stage in the brain (parietal

cortex?).

• Results further support the idea that texture and

touch are intimately linked.
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Part III: Analysis
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Analysis of RF Resp. with Manifold

Learning

• We want to quantitatively analyze the representational power of

self-organized VRF and TRF responses.

• RF response vectors live in a high-dimensional space.

• However, they may actually occupy a low-dimensional manifold.
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Methods

• Generate response vectors from all input-to-RF

combinations, and conduct manifold anlaysis on the

response vectors.
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KFD Analysis: Texture Input

• Kernel Fisher Discriminant Analysis.

• TRF response to texture input more separable.
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KFD on Texture: Classification

• Classification based on projection of top two KFD

eigenvectors.

• KFD of TRF responses gives higher performance.
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KFD Analysis: Nat. Scene Input

• Kernel Fisher Discriminant Analysis.

• VRF response to natural-scene input more

stretched.
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KFD on Nat. Scene: Classification

• Classification based on projection of top two KFD

eigenvectors.

• KFD of VRF responses gives higher performance.
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Summary (Part III)

• Manifold analysis shows that TRF more suitable for

texture than VRF.

• Likewise, VRF more suitable for natural scene.

• Results further support the link between texture and

touch.
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Wrap Up
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Discussion

• Contribution: Intimate link between texture and

touch revealed in multiple aspects.

• Relationship to our earlier work on 2D vs. 3D

textures (Oh and Choe 2007).

• Relationship to Nakayama et al. (1995) on the

primacy of surface representation in the visual

pathway.

• Limitations: scaling property for TRF unclear?
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Conclusion

• Texture may be intimately linked with tactile

processing in the brain.

• In other words, te nature of texture may be more

tactile than visual.

• Our results are expected to shed new light on texture

research, with a fundamental shift in perspective.
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