
These slides are by Dr. Jaerock Kwon at Kettering University.

The original URL is

http://kettering.jrkwon.com/sites/default/files/2011-2/ce-491/lecture/aLecture-01.pdf

so please use that instead of pointing to this local copy at tamu.edu.

App Development for Mobile Devices
Jaerock Kwon, Ph.D. Assistant Professor in Computer Engineering

Announcement

 Not yet…

2

Kettering University

Lecture 1
Introduction to Android

3

Kettering University

Today’s Topics

 Android Introduction

  Java crash course

4

Kettering University

Android

5

Kettering University

What is Android?

 An open source software stack that includes
  Operating system

  Linux operating system kernel that provides low level interface with the
hardware, memory management, and process control.

  Middleware

  A run time to execute Android applications including Dalvik virtual
machine and core libraries.

  Key mobile applications

  Email, SMS, PIM, web browser, and etc.

  Along with API libraries for writing mobile applications.

  Including open-source libraries such as SQLite, WebKit, and OpenGL ES.

 Open-source development platform for creating mobile
applications.

6

Kettering University

Android SDK Features

  No licensing, distributions, or development fees or release approval processes.

  GSM, EDGE, and 3G networks for telephony and data transfer

  Full multimedia hardware control

  APIs for using sensor hardware including accelerometer and the compass.

  APIs for location based services

  IPC

  Shared data storage

  Background applications and processes.

  Home screen widgets, Live Folders.

  HTML5 WebKit-based web browser

  And many more…

7

Kettering University

Introducing the
Development Framework

8

Kettering University

Android SDK

  The Android SDK includes
  The Android APIs

  The core of the SDK
  Development tools

  These tools let you compile and debug your app.
  The Android Virtual Device Manager and Emulator

  Android Emulator:
  You can see how your applications will look and behavior on a real Android device
  All Android applications run within Dalvik VM.

  Documentations
  Sample code

  No IDE
  There is no dedicated IDE for Android.
  Eclipse IDE:

  Android has a special plug-in for Eclipse IDE (ADT Plugin for Eclipse) for creating
Android projects.

  ADT Plugin tightly integrates Eclipse with the Android Emulator and debugging tools.

9

Kettering University

Android Software Stack 10

Kettering University

Android architecture

Application Framework

  Android offers developers the ability to build rich and innovative applications.

  Developers have full access to the same framework APIs used by the core
applications.

  Underlying all applications is a set of services, including
  Views

  can be used to build an application, including lists, grids, text boxes, buttons, and
even an embeddable web browser

  Content Providers
  enable applications to access data from other applications (such as Contacts), or to

share their own data
  A Resource Manager

  provides access to non-code resources such as localized strings, graphics, and layout
files

  A Notification Manager
  enables all applications to display custom alerts in the status bar

  An Activity Manager
  manages the lifecycle of applications and provides a common navigation backstack

11

Kettering University

Libraries

  A set of C/C++ libraries used by various components of the Android system.
  System C library

  Tuned for embedded Linux-based devices
  Media Libraries

  Based on PacketVideo's OpenCORE; the libraries support playback and recording of many
popular audio and video formats, as well as static image files

  Surface Manager
  Manages access to the display subsystem and seamlessly composites 2D and 3D graphic

layers from multiple applications
  LibWebCore

  A modern web browser engine which powers both the Android browser and an
embeddable web view

  SGL/ 3D libraries
  SGL: underlying 2D graphics engine
  An implementation based on OpenGL ES 1.0 APIs; the libraries use either hardware 3D

acceleration (where available) or the included, highly optimized 3D software rasterizer
  FreeType

  bitmap and vector font rendering
  SQLite

  A powerful and lightweight relational database engine available to all applications

12

Kettering University

Android Run-time

 Android includes a set of core libraries that most of the functionality
available in the core libraries of the Java programming language.

  Every Android app runs in its own process with its own instance of
the Dalvik virtual machine.

  The Dalvik VM executes files in the Dalvik Executable (.dex) format.

13

Kettering University

Java Crash Course

Kettering University

14 Java

 A programming language
  Syntax is very similar to C++ but different!

 A virtual platform
  Java virtual machine is a software machine or hypothetical chip.

  Note: The Dalvik virtual machine in Android is optimized for small
footprint machine.

  Bytecodes (cross-platform binary code)

  .class binary file of bytecodes

 A class libraries
  APIs for GUI, data storage, I/O, networking, and etc.

15

Kettering University

Java language

 No code outside of the class definition.

  Single inheritance only.

 Only one top level public class in a file
  The file name should be same as the public class name.

16

Kettering University

Java Bytecode &Virtual Machine

  Bytecode (the class file)is an intermediate representation of the
program.
  You can consider bytecode as the machine code of the Java Virtual

Machine.

  Java interpreter starts up a new virtual machine when it runs a Java
bytecode.

17

Kettering University

Package and Reference

  Packages and import
  A package is a bunch of classes and interfaces.

  Library of classes

  You can import packages that you need.

  Example) import android.os.Bundle

  Reference
  No pointers!

  Java doesn’t have pointer variables.

  Reference variables are equivalent in concept.

  Objects and Arrays are reference types

  Primitive types are stored as values

18

Kettering University

Creating Objects

  Point p;
  Note for C++ programmer.

  This doesn’t create the object of Point class.

  This is only declaration of a variable.

  Remember there is no pointer in Java.

  Point p = new Point(1, 2);
  This allocates an object.

 Garbage collector
  It reclaims unused memory.

  You don’t need to free unused objects.

19

Kettering University

Reference

  Example
  int x = 10;
int y = x;
// x has a separate memory space from y

  Point p = new Point(1, 2);
Point q = p;
// q is a reference to p;
// there is only one copy of Point object in the memory

20

Kettering University

Passing Arguments

  Primitive type:
  Pass by value:

  The called method has a copy of the value.

  The method cannot pass changed value in the argument to the caller.

  Reference type:
  Pass by reference:

  The called method has a copy of the reference.

  The method accesses the same object!

21

Kettering University

Inheritance

  Keyword extends to inherit from a superclass.

  Example
  package edu.kettering.hellokettering;

import android.app.Activity;
import android.os.Bundle;

public class HelloKettering extends Activity {
 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 }
}

22

Kettering University

Developing for Mobile
Devices

Kettering University

23

Design Considerations

  Small and portable mobile devices
  Offer exciting opportunities for software development.
  But consider limitations

  Low processor power
  Limited RAM/permanent storage capacity
  Small screen size
  High costs associated with data transfer
  Slow data transfer rates with high latency
  Unreliable data connections
  Battery life!

  Designing for Android
  Performance
  Responsiveness
  Seamlessness

24

Kettering University

Designing for Performance

  Being fast and efficient
  http://developer.android.com/guide/practices/design/

performance.html

  Avoid creating short-tem temporary objects.

  Fewer objects created mean less-frequent garbage collection

  Avoid internal getter/setters

  Excellent habits for C++, but not for Android.

  Direct field access is about 7x faster than invoking a trivial getter.

  Use static final for constants

  Use enhance for loop syntax

25

Kettering University

Designing for Responsiveness

 Activity Manager and Window Manager monitor
application responsiveness.

 Android display the ANR dialog when it detects
one of following conditions
  No response to an input event within 5 seconds
  A BroadcastReceiver hasn't finished executing

within 10 seconds

  How to avoid ANR?
  When an Android app runs on a single thread, any

lengthy operation (network, database,
computationally expensive calculation) could
invoke the ANR.

  Consider making a child thread to do the lengthy
operation.

26

Kettering University

Application Nor Responding (ANR)

Designing for Seamlessness

  Your application can cause problems under the multitasking
environment when you ignore seamlessness issues.

  Be a good citizen!
  Save instant state

  Keep in mind that Android is a mobile platform.
  Another app can pop up any time over your own app

  Use a thread when you need to do a lot.
  Avoid the ANR.

  Use multiple screens when necessary.
  Design your UI to work with multiple screen resolutions
  Assume the network is slow
  Don't assume touchscreen or keyboard
  Do conserve the device battery

27

Kettering University

Questions?

28

Kettering University

