
Communicating in Code:
Commenting

Programming Studio

Fall 2009

Note: several examples in this lecture taken from The Practice of Programming by Kernighan and Pike

Comments

● An internal documentation mechanism
– Documentation of the code stays with and close

to the code
● Comments should complement good coding

style, not replace it
– The better written your code, the fewer comments

you will need
● Poor commenting is a waste of time and

sometimes harmful.

What Comments are Not

● Design documents

What Comments are Not

● Design documents
● API references

What Comments are Not

● Design documents
● API references
● Specifications

What Comments are Not

● Design documents
● API references
● Specifications
● Padding to increase your “lines of

code”

What Comments are Not

● Design documents
● API references
● Specifications
● Padding to increase your “lines of

code”
● Places to tell jokes to future

programmers

Types of Comments

● Repeat of the Code
– Repeating what code does or stating the

obvious is useless
//loop through all Teams

for(i=0;i<NumTeams;i++)

 //add that team’s players to total

 TotalPlayers += Team[i].NumPlayers;

Types of Comments

● Repeat of the Code
– Repeating what code does or stating the

obvious is useless
//Find total number of players in league

for(i=0;i<NumTeams;i++)

 TotalPlayers += Team[i].NumPlayers;

Types of Comments

● Explanation of the code
– Can be a sign that the code is difficult to

understand
– Don’t comment bad code – rewrite it
– If the explanation is too long, code should be

rewritten

/* Update the attenuation due to multiple scattering
 whenever there is a valid layer hit. The next intersection

layer hit will be skipped over and the intersection point
will generate a new vector and the last vector created will
be stored */

for(i=IntersectLayer-1;i<NumLayersHit;i++) {
 if (isValidHit(r)) {
 Attenuation.Update(Layer[i++].HitPoint(genVector(r)));
 }
}

Types of Comments

● Marker in the Code
– Used as notes to the developer

//***** FIX THIS ROUTINE
● Often have key phrases to search on

– Used to visually separate code blocks
● As a style element, e.g. function header

blocks

Types of Comments

● Summary of the code
– Short statement summarizing several lines

of code.
– Useful for quick scanning over code to find

areas where things are happening
– Provides a global “map” to the code

Types of Comments

● Description of the code’s intent
– Best type – explains the why, not the how
– Comments should add something that is

not immediately evident from the code
– Understanding the intent of code is usually

the issue – it’s much easier to tell exactly
what the code is doing.

Things to Comment

● Functions
● Global variables

– Can be tough to keep track of
● Code that is truly complicated

– Might require lots of explanation,
references to algorithms

Maintaining Comments

● Comments need to be maintained as
code is edited!
– Conflicts between comments and code

cause tremendous difficulty
– Commenting styles can assist with

maintenance
/*************************/
/* */
/* My comments */
/* */
/*************************/

Maintaining Comments

● Comments need to be maintained as
code is edited!
– Conflicts between comments and code

cause tremendous difficulty
– Commenting styles can assist with

maintenance
/*************************
 * *
 * My comments *
 * *
 *************************/

Maintaining Comments

● Comments need to be maintained as
code is edited!
– Conflicts between comments and code

cause tremendous difficulty
– Commenting styles can assist with

maintenance
/************************
 *
 * My comments
 *
 ************************/

Maintaining Comments

● Comments need to be maintained as
code is edited!
– Conflicts between comments and code

cause tremendous difficulty
– Commenting styles can assist with

maintenance
/************************

 My comments

 ************************/

Maintaining Comments

● Comments need to be maintained as
code is edited!
– Conflicts between comments and code

cause tremendous difficulty
– Commenting styles can assist with

maintenance
● Blocks of comments
● Lining up comments

Maintaining Comments

● Difficulty lining up comments:
int Capacity; // Number of cats we could keep

int NumCats; // Number of cats in the house

float CatFood; // Monthly cost of cat food

Maintaining Comments

● Difficulty lining up comments:
int Capacity; // Number of cats we could keep

int NumCats; // Number of cats in the house

float CatFood; // Monthly cost of cat food

float BoardingCosts; // Cost to board cats per day

Maintaining Comments

● Difficulty lining up comments:
– Difficult to maintain over time, so tend to

degrade with modification
– Leaving enough space often leads to short

comments

Maintaining Comments

● Comments often last
– Don’t use comments you don’t want

others to see
– Don’t expect comments to really be

“temporary”
– If markers are left in code, be sure they

will be found

More Commenting “DON’Ts”

● Don’t include useless comments

MOV AX, 723h ; R.I.P.L.V.B

More Commenting “DON’Ts”

● Don’t include useless comments

MOV AX, 723h ; R.I.P.L.V.B

(Beethoven died in 1827 =
723h)

More Commenting “DON’Ts”

● Don’t include useless comments
● Avoid endline comments

– For one line of code, tend to be repetitive
● not much to say about one line of code

– For multiple lines of code, tend to be
difficult to match

● Which lines does the comment “belong” to?
– Difficult to say too much

● Not much room

More Commenting “DON’Ts”

● Don’t include useless comments
● Avoid endline comments
● Don’t use too many comments

– Can actually obscure the code itself!
– No set “ideal”, but one comment about

every 10 lines or so is probably right.

Commenting “DOs”

● Write code at the level of intent
/* Check each character in “inputstring” until a dollar sign

is found or all characters have been checked */
done = false;
maxLen = inputString.length();
i = 0;
while (!done && (i<maxLen)) {
 if (inputString[i] == ‘$’) {
 done = true;
 }
 else {
 i++;
 }
}

Commenting “DOs”

● Write code at the level of intent
/* Find ‘$’ in inputString */

done = false;

maxLen = inputString.length();

i = 0;

while (!done && (i<maxLen)) {

 if (inputString[i] == ‘$’) {

 done = true;

 }

 else {

 i++;

 }

}

Commenting “DOs”

● Write code at the level of intent
/* Find the command-word terminator ($) */

done = false;

maxLen = inputString.length();

i = 0;

while (!done && (i<maxLen)) {

 if (inputString[i] == ‘$’) {

 done = true;

 }

 else {

 i++;

 }

}

Commenting “DOs”

● Write code at the level of intent
● Use comments to prepare the reader

for what is to follow
– May not understand why things are being

set up in one area for later use
– Comments should precede statements

they comment on.

Commenting “DOs”

● Write code at the level of intent
● Use comments to prepare the reader

for what is to follow
● Document surprises not obvious in the

code
for(element=0; element < elementCount; element++) {

 // Use right shift to divide by two. Substituting

 // right-shift operation cuts loop time by 75%

 elementList[element] = elementList[element] >> 1;

}

Commenting “DOs”

● Write code at the level of intent
● Use comments to prepare the reader

for what is to follow
● Document surprises not obvious in the

code
● Avd crypt stats. and abbr.

Commenting “DOs”

● Write code at the level of intent
● Use comments to prepare the reader

for what is to follow
● Document surprises not obvious in the

code
● Avoid cryptic statements and

abbreviations

Commenting “DOs”

● Write code at the level of intent
● Use comments to prepare the reader for

what is to follow
● Document surprises not obvious in the code
● Avoid cryptic statements and abbreviations
● Comment about anything that is used to

avoid an error or an undocumented feature
– Prevents that code from being accidentally

deleted!

Other Commenting
Suggestions

● Comment units for numeric data
● Comment ranges of allowable values
● Comment limitations on input data
● Document flags to the bit level
● Be sure comments stay associated

with what they comment
– avoid separating comments about a

variable from the variable

Commenting Control
Structures

● Comments before loops and large
blocks are natural

● Comment to identify the end of control
structures, especially when end is far
separated from beginning

Commenting Functions

● Input required
– Restrictions/ranges

● Output produced
● Side effects and global effects
● Limitations of the routine
● Sources for algorithms implemented

