
Bayesian Learning

• Turquoise slides: Alpaydin

• Blue slides: Mitchell.
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Bayesian Learning

• Probabilistic approach to inference.

• Quantities of interest are governed by prob. dist. and optimal

decisions can be made by reasoning about these prob.

• Learning algorithms that directly deal with probabilities.

• Analysis framework for non-probabilistic methods.
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Two Roles for Bayesian Methods

Provides practical learning algorithms:

• Naive Bayes learning

• Bayesian belief network learning

• Combine prior knowledge (prior probabilities) with observed data

• Requires prior probabilities

Provides useful conceptual framework

• Provides “gold standard” for evaluating other learning algorithms

• Additional insight into Occam’s razor
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Bayes Theorem

P (h|D) =
P (D|h)P (h)

P (D)

• P (h) = prior probability that h holds, before seeing the training

data

• P (D) = prior probability of observing training dataD

• P (D|h) = probability of observingD in a world where h holds

• P (h|D) = probability of h holding given observed dataD
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Choosing Hypotheses

P (h|D) =
P (D|h)P (h)

P (D)

Generally want the most probable hypothesis given the training data

Maximum a posteriori hypothesis hMAP :

hMAP = arg max
h∈H

P (h|D)

= arg max
h∈H

P (D|h)P (h)

P (D)

= arg max
h∈H

P (D|h)P (h)
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Choosing Hypotheses

• If all hypotheses are equally probable a priori:

P (hi) = P (hj),∀hi, hj ,
then, hMAP reduces to:

hML ≡ argmax
h∈H

P (D|h).

→ Maximum Likelihood hypothesis.
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Bayes Theorem: Example

Does patient have cancer or not?

A patient takes a lab test and the result comes back positive.

The test returns a correct positive result in only 98% of the

cases in which the disease is actually present, and a correct

negative result in only 97% of the cases in which the

disease is not present. Furthermore, .008 of the entire

population have this cancer.

P (cancer) = P (¬cancer) =

P (⊕|cancer) = P (	|cancer) =

P (⊕|¬cancer) = P (	|¬cancer) =

How does P (cancer|⊕) compare to P (¬cancer|⊕)? (What is

hMAP ?
7

Basic Probability Formulas

• Product Rule: probability P (A ∧B) of a conjunction of two

events A and B:

P (A ∧B) = P (A|B)P (B) = P (B|A)P (A)

• Sum Rule: probability of a disjunction of two events A and B:

P (A ∨B) = P (A) + P (B)− P (A ∧B)

• Theorem of total probability: if eventsA1, . . . , An are mutually

exclusive with
Pn
i=1 P (Ai) = 1, then

P (B) =

nX
i=1

P (B|Ai)P (Ai)
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Brute Force MAP Hypothesis Learner

1. For each hypothesis h inH , calculate the posterior probability

P (h|D) =
P (D|h)P (h)

P (D)

2. Output the hypothesis hMAP with the highest posterior

probability

hMAP = argmax
h∈H

P (h|D)
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Learning A Real Valued Function

hML

f

e

y

x

Consider any real-valued target function f

Training examples 〈xi, di〉, where di is noisy training value

• di = f(xi) + ei

• ei is random variable (noise) drawn independently for each xi
according to some Gaussian distribution with mean=0

Then the maximum likelihood hypothesis hML is the one that

minimizes the sum of squared errors:

hML = arg min
h∈H

mX
i=1

(di − h(xi))
2
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Setting up the Stage

• Probability density function:

p(x0) ≡ lim
ε→0

1

ε
P (x0 ≤ x < x0 + ε)

• ML hypothesis

hML = argmax
h∈H

p(D|h)

• Training instances 〈x1, ..., xm〉 and target values

〈d1, ..., dm〉, where di = f(xi) + ei.

• Assume training examples are mutually independent given h,

hML = argmax
h∈H

mY
i=1

p(di|h)

Note: p(a, b|c) = p(a|b, c) · p(b|c) = p(a|c) · p(b|c)
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Derivation of ML for Func. Approx.

From hML = argmaxh∈H
Qm
i=1 p(di|h):

• Since di = f(xi) + ei and ei ∼ N (0, σ2), it must be:

di ∼ N (f(xi), σ
2).

– x ∼ N (µ, σ2) means random variable x is normally

distributed with mean µ and variance σ2.

• Using pdf ofN :

hML = argmax
h∈H

mY
i=1

1√
2πσ2

e
− (di−µ)2

2σ2 .

hML = argmax
h∈H

mY
i=1

1√
2πσ2

e
− (di−h(xi))

2

2σ2 .

12



Derivation of ML

hML = argmax
h∈H

mY
i=1

1√
2πσ2

e
− (di−h(xi))

2

2σ2 .

• Get rid of constant factor 1√
2πσ2

, and put on log:

hML = argmax
h∈H

ln
mY
i=1

e
− (di−h(xi))

2

2σ2

= argmax
h∈H

mX
i=1

ln e
− (di−h(xi))

2

2σ2

= argmax
h∈H

mX
i=1

− (di − h(xi))2
2σ2

= argmin
h∈H

mX
i=1

(di − h(xi))2 (1)
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Least Square as ML

Assumptions

• Observed training values di generated by adding random noise

to true target value, where noise has a normal distribution with

zero mean.

• All hypotheses are equally probable (uniform prior).

– Note: it is possible thatMAP 6= ML!

Limitations

• Possible noise in xi not accounted for.
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Learning to Predict Probabilities

Consider predicting survival probability from patient data.

Training examples 〈xi, di〉, where di is 1 or 0.

Want to train network to output a probability given xi (not 0 or 1).

In this case we can show:

hML = argmax
h∈H

mX
i=1

di lnh(xi) + (1− di) ln(1− h(xi))

Weight update rule for a sigmoid unit:

wjk ← wjk + ∆wjk

where

∆wjk = η
mX
i=1

(di − h(xi)) xijk
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Learning to Predict Probabilities: P (D|h)

• First start with P (D|h), given

D = {〈x1, d1〉, ...〈xm, dm〉}.

P (D|h) =

mY
i=1

P (xi, di|h)

• Assuming P (xi|h) = P (xi):

P (D|h) =
mY
i=1

P (xi, di|h)

=
mY
i=1

P (di|h, xi)P (xi|h)

=
mY
i=1

P (di|h, xi)P (xi). (2)

Note: P (A,B|C) = P (A|B,C)P (B|C)16



Learning to Predict Probabilities: P (D|h)

• h is the probability of di = 1 given the sample xi, thus:

– P (di|h, xi) = h(xi) if di = 1

– P (di|h, xi) = 1− h(xi) if di = 0

• Rewriting the above:

P (di|h, xi) = h(xi)
di (1− h(xi))

1−di

• Thus:

P (D|h) =

mY
i=1

P (di|h, xi)P (xi)

=
mY
i=1

h(xi)
di (1− h(xi))

1−diP (xi)
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Learning to Predict Probabilities: hML

hML = argmax
h∈H

mY
i=1

h(xi)
di (1− h(xi))1−diP (xi)

= argmax
h∈H

mY
i=1

h(xi)
di (1− h(xi))1−di (3)

since P (xi) is independent of h. Finally, taking ln:

hML = argmax
h∈H

mX
i=1

di lnh(xi) + (1− di) ln(1− h(xi)).

Note the similarity of the above to entropy (turn it into argmin, and compare to

−P
i pi log2 pi).

18

Learning to Predict Probabilities: Gradient Descent
LettingG(h,D) = hML , and putting in a neural network with a sigmoid
output unit h(xi):

∂G(h,D)

∂wjk

=
mX
i=1

∂G(h,D)

∂h(xi)

∂h(xi)

∂wjk

=
mX
i=1

∂
Pm
p=1 dp lnh(xp) + (1 − dp) ln(1 − h(xp))

∂h(xi)

∂h(xi)

∂wjk

=
mX
i=1

∂di lnh(xi) + (1 − di) ln(1 − h(xi))

∂h(xi)

∂h(xi)

∂wjk

=
mX
i=1

di − h(xi)

h(xi)(1 − h(xi))

∂h(xi)

∂wjk

=
mX
i=1

di − h(xi)

h(xi)(1 − h(xi))
σ
′(xi)xijk

=
mX
i=1

(di − h(xi))xijk

Note:
d ln(x)
dx

= 1
x

, andσ′(xi) = h(xi)(1 − h(xi)).
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Learning Probabilities: Weight Update

We want to maximize (not miminize), thus

∆wjk = η
∂G(h,D)

∂wjk

= η

mX
i=1

(di − h(xi))xik

wjk ← wjk + ∆wjk

Following the above rule will produce (local minima in) hML.

Compare to backpropagation!
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Minimum Description Length

Occam’s razor: prefer the shortest hypothesis.

hMAP = argmax
h∈H

P (D|h)P (h)

hMAP = argmax
h∈H

log2 P (D|h) + log2 P (h)

hMAP = argmin
h∈H

− log2 P (D|h)− log2 P (h)

Surprisingly, the above can be interpreted as hMAP preferring

shorter hypotheses, assuming a particular encoding scheme is used

for the hypothesis and the data.

According to information theory, the shortest code length for a

message occurring with probability pi is− log2 pi bits.
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MDL

hMAP = argmin
h∈H

− log2 P (D|h)− log2 P (h)

• LC(i): description length of message i with respect to codeC .

• − log2 P (h): description length of h under optimal codingCH for the

hypothesis spaceH .

LCH (h) = − log2 P (h)

• − log2 P (D|h): description length of training dataD given hypothesis

h, under optimal encodingCD|H .

LCD|H (D|h) = − log2 P (D|h)

• Finally, we get:

hMAP = argmin
h∈H

LCD|H (D|h) + LCH (h)
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MDL

• MAP:

hMAP = argmin
h∈H

LCD|H (D|h) + LCH (h)

• MDL: Choose hMDL such that:

hMDL = argmin
h∈H

LC1 (h) + LC2 (D|h)

which is the hypothesis that minimizes the combined length of

the hypotheis itself, and the data described by the hypothesis.

• hMDL = hMAP if C1 = CH and C2 = CD|H .
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Bayes Optimal Classifier

• What is the most probable hypothesis given the training data, vs.

What is the most probable classification?

• Example:

– P (h1|D) = 0.4, P (h2|D) = 0.3, P (h3|D) = 0.3.

– Given a new instance x, h1(x) = 1, h2(x) = 0,

h1(x) = 0.

– In this case, probability of x being positive is only 0.4.
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Bayes Optimal Classification

If a new instance can take classification vj ∈ V , then the probability

P (vj |D) of correct classification of new instance being vj is:

P (vj |D) =
X
hi∈H

P (vj |hi)P (hi|D)

Thus, the optimal classification is

argmax
vj∈V

X
hi∈H

P (vj |hi)P (hi|D).
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Bayes Optimal Classifier

What is the assumption for the following to work?

P (vj |D) =
X
hi∈H

P (vj |hi)P (hi|D)

Let’s considerH = {h,¬h}:

P (v|D) = P (v, h|D) + P (v,¬h|D)

=
P (v, h,D)

P (D)
+
P (v,¬h,D)

P (D)

=
P (v|h,D)P (h|D)P (D)

P (D)

+
P (v|¬h,D)P (¬h|D)P (D)

P (D)

{if P (v|h,D) = P (v|h), etc.}
= P (v|h)P (h|D) + P (v|¬h)P (¬h|D)
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Bayes Optimal Classifier: Example

• P (h1|D) = 0.4, P (h2|D) = 0.3, P (h3|D) = 0.3.

• Given a new instance x, h1(x) = 1, h2(x) = 0, h1(x) = 0.

– P (	|h1) = 0, P (⊕|h1) = 1, etc.

– P (⊕|D) = 0.4 + 0 + 0,

P (	|D) = 0 + 0.3 + 0.3 = 0.6

– Thus, argmaxv∈O{⊕,	} P (v|D) = 	.

• Bayes optimal classifiers maximize the probability that a new

instance is correctly classified, given the available data,

hypothesis spaceH , and prior probabilities overH .

• Some oddities: The resulting hypotheis can be outside of the

hypothesis space.
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Gibbs Sampling

Finding argmaxv∈V P (v|D) by considering every hypothesis

h ∈ H can be infeasible. A less optimal, but error-bounded version is

Gibbs sampling:

1. Randomly pick h ∈ H with probability P (h|D).

2. Use h to classify the new instance x.

The result is that missclassification rate is at most 2× that of BOC.
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Naive Bayes Classifier

Given attribute values 〈a1, a2, ..., an〉, give the classification

v ∈ V :

vMAP = argmax
vj∈V

P (vj |a1, a2, ..., an)

vMAP = argmax
vj∈V

P (a1, a2, ..., an|vj)P (vj)

P (a1, a2, ..., an)

= argmax
vj∈V

P (a1, a2, ..., an|vj)P (vj)

• Want to estimate P (a1, a2, ..., an|vj) and P (vj) from

training data.
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Naive Bayes

• P (vj) is easy to calculate: Just count the frequency.

• P (a1, a2, ..., an|vj) takes the number of posible instances×
number of possible target values.

• P (a1, a2, ..., an|vj) can be approximated as

P (a1, a2, ..., an|vj) =
Y
i

P (ai|vj).

• From this naive Bayes classifier is defined as:

vNB = argmax
vj∈V

P (vj)
Y
i

P (ai|vj)

• Naive Bayes only takes number of distinct attribute values×
number of distinct target values.
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Naive Bayes Algorithm

Naive Bayes Learn(examples)

For each target value vj

P̂ (vj)← estimate P (vj)

For each attribute value ai of each attribute a

P̂ (ai|vj)← estimate P (ai|vj)

Classify New Instance(x)

vNB = argmax
vj∈V

P̂ (vj)
Y
i

P̂ (xi|vj)

31

Naive Bayes: Example

Consider PlayTennis again, and new instance:

x = 〈Outlk = sun, Temp = cool,Humid = high,Wind = strong〉
V = {Y es,No}

Want to compute:

vNB = argmax
vj∈V

P (vj)
Y
i

P (xi|vj)

P (Y )P (sun|Y )P (cool|Y )P (high|Y )P (strong|Y ) = .005

P (N)P (sun|N)P (cool|N)P (high|N)P (strong|N) = .021

Thus, vNB = No
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Naive Bayes: Subtleties

1. Conditional independence assumption is often violated

P (a1, a2 . . . an|vj) =
Y
i

P (ai|vj)

• ...but it works surprisingly well anyway. Note don’t need

estimated posteriors P̂ (vj |x) to be correct; need only that

argmax
vj∈V

P̂ (vj)
Y
i

P̂ (ai|vj) = argmax
vj∈V

P (vj)P (a1 . . . , an|vj)

• Naive Bayes posteriors often unrealistically close to 1 or 0.
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Naive Bayes: Subtleties

What if none of the training instances with target value vj have attribute value

ai? Then

P̂ (ai|vj) = 0, and...

P̂ (vj)
Y
i

P̂ (ai|vj) = 0

Typical solution is Bayesian estimate for P̂ (ai|vj)

P̂ (ai|vj)←
nc +mp

n+m

where

• n is number of training examples for which v = vj ,

• nc number of examples for which v = vj and a = ai

• p is prior estimate for P̂ (ai|vj)
• m is weight given to prior (i.e. number of “virtual” examples)
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Conditional Independence

Definition: X is conditionally independent of Y given Z if
the probability distribution governingX is independent of
the value of Y given the value of Z ; that is, if

(∀xi, yj , zk)P (X = xi|Y = yj , Z = zk) = P (X = xi|Z = zk)

more compactly, we write

P (X|Y, Z) = P (X|Z)

Example: Thunder is conditionally independent ofRain, given

Lightning

P (Thunder|Rain, Lightning) = P (Thunder|Lightning)

Naive Bayes uses cond. indep. to justify

P (X,Y |Z) = P (X|Y, Z)P (Y |Z)

= P (X|Z)P (Y |Z)
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Bayesian Belief Network
Storm

CampfireLightning

Thunder ForestFire

Campfire

C

¬C

¬S,B ¬S,¬B

0.4

0.6

0.1

0.9

0.8

0.2

0.2

0.8

S,¬B

BusTourGroup

S,B

Network represents a set of conditional independence assertions:

• Each node is asserted to be conditionally independent of its

nondescendants, given its immediate predecessors.

• Directed acyclic graph.

• Each node has a conditional probability table:

P (Node|Parents(Node)).

• BBN represents the joint probability P (N1, N2, ...) in a

compact form.
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Bayesian Belief Network
Storm

CampfireLightning

Thunder ForestFire

Campfire

C

¬C

¬S,B ¬S,¬B

0.4

0.6

0.1

0.9

0.8

0.2

0.2

0.8

S,¬B

BusTourGroup

S,B

Represents joint probability distribution over all variables

• e.g., P (Storm,BusTourGroup, . . . , ForestF ire)

• in general,

P (Y1 = y1, . . . , Yn = yn) =
nY
i=1

P (Yi = yi|Parents(Yi))

where Parents(Yi) denotes immediate predecessors of Yi in graph

having the y values specified on the left.

• So, joint distribution is fully defined by graph, plus the

P (yi|Parents(Yi)) 37

Inference in Bayesian Networks

How can one infer the (probabilities of) values of one or more network

variables, given observed values of others?

• Bayes net contains all the information needed for this inference.

• If only one variable with unknown value, easy to infer it.

• In general case, problem is NP hard.

In practice, can succeed in many cases:

• Exact inference methods work well for some network structures.

• Monte Carlo methods “simulate” the network randomly to

calculate approximate solutions.
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Monte Carlo for Inference in BBN

Want to calculate and arbitraty conditional probability.

1. Generate many random samples based on the given BBN.

(a) Sample from P (Storm) and P (BusTourGroup).

(b) Based on the outcome of previous step outcome1, sample

from P (Lightening|Storm = outcome1),

P (Campfire|Strom,BusTourGroup =

outcome1), etc.

(c) Combine all the outcomes to form a single sample vector.

2. Estimate the particular conditional probability based on the

samples you generated.
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Learning of Bayesian Networks

Several variants of this learning task

• Network structure might be known or unknown

• Training examples might provide values of all network variables,

or just some

If structure known and observe all variables

• Then it’s easy as training a Naive Bayes classifier
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Learning Bayes Nets

Suppose structure known, variables partially observable

e.g., observe ForestFire, Storm, BusTourGroup, Thunder, but not

Lightning, Campfire...

• Similar to training neural network with hidden units

• In fact, can learn network conditional probability tables using

gradient ascent!

• Converge to network h that (locally) maximizes P (D|h)
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Expectation Maximization (EM)

When to use:

• Data is only partially observable

• Unsupervised clustering (target value unobservable)

• Supervised learning (some instance attributes unobservable)

Some uses:

• Train Bayesian Belief Networks

• Unsupervised clustering (AUTOCLASS)

• Learning Hidden Markov Models
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EM for Estimating k Means

Given:

• Instances fromX generated by mixture of k Gaussian distributions

• Unknown means 〈µ1, . . . , µk〉 of the k Gaussians

• Don’t know which instance xi was generated by which Gaussian

Determine:

• Maximum likelihood estimates of 〈µ1, . . . , µk〉

Think of full description of each instance as yi = 〈xi, zi1, zi2〉, where

• zij is 1 if xi generated by jth Gaussian

• xi observable

• zij unobservable
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EM for Estimating k Means

EM Algorithm: Pick random initial h = 〈µ1, µ2〉, then iterate

E step: Calculate the expected valueE[zij ] of each hidden variable zij ,

assuming the current hypothesis h = 〈µ1, µ2〉 holds.

E[zij ] =
p(x = xi|µ = µj)P2
n=1 p(x = xi|µ = µn)

=
e
− 1

2σ2 (xi−µj)2P2
n=1 e

− 1
2σ2 (xi−µn)2

M step: Calculate a new maximum likelihood hypothesis h′ = 〈µ′1, µ′2〉,
assuming the value taken on by each hidden variable zij is its expected

valueE[zij ] calculated above. Replace h = 〈µ1, µ2〉 by

h′ = 〈µ′1, µ′2〉.

µj ←
Pm
i=1 E[zij ] xiPm
i=1 E[zij ]
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EM Algorithm

Converges to local maximum likelihood h

and provides estimates of hidden variables zij

In fact, local maximum inE[lnP (Y |h)]

• Y is complete (observable plus unobservable variables) data

• Expected value is taken over possible values of unobserved

variables in Y
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General EM Problem

Given:

• Observed dataX = {x1, . . . , xm}
• Unobserved data Z = {z1, . . . , zm}
• Parameterized probability distribution P (Y |h), where

– Y = {y1, . . . , ym} is the full data yi = xi ∪ zi
– h are the parameters

Determine:

• h that (locally) maximizesE[lnP (Y |h)]
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General EM Method

Define likelihood functionQ(h′|h) which calculates Y = X ∪ Z using

observedX and current parameters h to estimateZ

Q(h
′|h)← E[lnP (Y |h′)|h,X]

EM Algorithm:

Estimation (E) step: CalculateQ(h′|h) using the current hypothesis h

and the observed dataX to estimate the probability distribution over Y .

Q(h
′|h)← E[lnP (Y |h′)|h,X]

Maximization (M) step: Replace hypothesis h by the hypothesis h′ that

maximizes thisQ function.

h← argmax
h′

Q(h
′|h)
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Derivation of k-Means

• Hypothesis h is parameterized by θ = 〈µ1...µk〉.
• Observed dataX = {〈xi〉}
• Hidden variables Z = {〈zi1, ..., zik〉}:

– zik = 1 if input xi is generated by th k-th normal dist.

– For each input, k entries.

• First, start with defining ln p(Y |h).

48



Deriving ln P (Y |h)

p(yi|h′) = p(xi, zi1, zi2, ..., zik|h′) =
1p

2πσ2
e
− 1

2σ2
Pk
j=1 zij(xi−µ′j)2

Note that the vector 〈zi1, ..., zik〉 contains only a single 1 and all the
rest are 0.

lnP (Y |h′) = ln
mY
i=1

p(yi|h′)

=
mX
i=1

ln p(yi|h′)

=

mX
i=1

0@ln
1√

2πσ2
− 1

2σ2

kX
j=1

zij(xi − µ′j)2
1A
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Deriving E[ln P (Y |h)]
Since P (Y |h′) is a linear function of zij , and sinceE[f(z)] = f(E[z]),

E[lnP (Y |h′)] = E

24 mX
i=1

0@ln
1p

2πσ2
−

1

2σ2

kX
j=1

zij(xi − µ′j)
2

1A35

=
mX
i=1

0@ln
1p

2πσ2
−

1

2σ2

kX
j=1

E[zij ](xi − µ′j)
2

1A

Thus,

Q(h
′|h) = Q(〈µ′1, ..., µ′k〉|h)

=

mX
i=1

0@ln
1√

2πσ2
− 1

2σ2

kX
j=1

E[zij ](xi − µ′j)2
1A
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Finding argmaxh′ Q(h′|h)
With

E[zij ] =
e
− 1

2σ2 (xi−µj)2P2
n=1 e

− 1
2σ2 (xi−µn)2

we want to find h′ such that

argmax
h′

Q(h′|h) = argmax
h′

mX
i=1

0@ln
1p

2πσ2
−

1

2σ2

kX
j=1

E[zij ](xi − µ′j)
2

1A

= argmin
h′

mX
i=1

kX
j=1

E[zij ](xi − µ′j)
2
,

which is minimized by

µj ←
Pm
i=1 E[zij ]xiPm
i=1 E[zij ]

.

51

Deriving the Update Rule
Set the derivative of the quantity to be minimized to be zero:

∂

∂µ′
j

mX
i=1

kX
j=1

E[zij ](xi − µ′j)
2

=
∂

∂µ′
j

mX
i=1

E[zij ](xi − µ′j)
2

= 2
mX
i=1

E[zij ](xi − µ′j) = 0

mX
i=1

E[zij ]xi −
mX
i=1

E[zij ]µ
′
j = 0

mX
i=1

E[zij ]xi = µ
′
j

mX
i=1

E[zij ]

µ
′
j =

Pm
i=1 E[zij ]xiPm
i=1 E[zij ]

See Bishop (1995) Neural Networks for Pattern Recognition, Oxford U Press. pp. 63–64.
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Losses and Risks
 Actions: αi

 Loss of αi when the state is Ck : λik

 Expected risk (Duda and Hart, 1973)

   

   xx

xx

|min|  if  choose

||

kkii

k

K

k
iki

RR

CPR
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Losses and Risks: 0/1 Loss










ki

ki
ik

 if 

 if 

1

0


   

 

 x

x

xx

|

|

||

i

ik
k

K

k
kiki

CP

CP

CPR















1

1
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For minimum risk, choose the most probable class
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Losses and Risks: Reject

10

1

1

0














     

otherwise    

 if    

 if    

,Ki

ki

ik

   

     xxx

xx

|||

||

i
ik

ki

K

k
kK

CPCPR

CPR















1

1

1





     

otherwise         reject

| and   || if    choose  1xxx ikii CPikCPCPC
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Discriminant Functions
  Kigi ,, , 1x   xx kkii ggC max if  choose 

    xxx kkii gg max| R

 

 

 

   









ii

i

i

i

CPCp

CP

R

g

|

|

|

x

x

x

x
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K decision regions R1,...,RK
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K=2 Classes
 Dichotomizer (K=2) vs Polychotomizer (K>2)

 g(x) = g1(x) – g2(x)

 Log odds:

 



 

otherwise 

 if 
 choose

2

1 0

C

gC x

 
 x

x

|

|
log

2

1

CP

CP

11Lecture Notes for E Alpaydın 2010 Introduction to Machine Learning 2e © The MIT Press (V1.0)

Utility Theory
 Prob of state k given exidence x: P (Sk|x)

 Utility of αi when state is k: Uik

 Expected utility:

   

   xx

xx

| max| if   Choose

||

j
j

ii

k
kiki

EUEUα

SPUEU
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Association Rules
 Association rule: X  Y

 People who buy/click/visit/enjoy X are also likely to 
buy/click/visit/enjoy Y.

 A rule implies association, not necessarily causation.
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Association measures
 Support (X  Y): 

 Confidence (X  Y):

 Lift (X  Y):
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 and  bought  whocustomers
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#

#
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,
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Apriori algorithm (Agrawal et al., 
1996)
 For (X,Y,Z), a 3-item set, to be frequent (have enough 

support), (X,Y), (X,Z), and (Y,Z) should be frequent.

 If (X,Y) is not frequent, none of its supersets can be 
frequent.

 Once we find the frequent k-item sets, we convert them 
to rules: X, Y  Z, ...

and X  Y, Z, ...
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