Local Methods

e Turquoise slides: Alpaydin

e Blue slides: Haykin, clarifications/notations

Competetive Learning

X = {x'}, : set of samples (green).
m;,7 = 1,2, ..., k: cluster centers (red).

b:if my is closest to X, 1.

Note: t = index for input, 2 = index for cluster center.

Introduction

e Divide the input space into local regions and learn simple
(constant/linear) models in each patch

® Unsupervised: Competitive, online clustering
e Supervised: Radial-basis functions, mixture of experts

Competetive Learning: k-Means

e Batch: update cluster centers according to simple “mean” at each
moment.
e Online: Use stochastic gradient descent.
- Note: mj; is a vector, having scalar components 111, ; (see next page).

— Typo in the next page: term should contain ||..| |

e Both are iteratively done until convergence is achieved.

Competetive Learning

X

m,
7N _Am =1(x—m)
L7 m

Updating the center.
Am =n(x —w)
m=m+n(x—w)

“Move center closer to the current input”

Replacing 0!, etc.

We can use lateral inhibition to implement b;“f in a more biologically
plausible manner (see figure in next slide). Needs iteration until viaues
settle.

We can also use dot product instead of Euclidean distance as a distance

measure.

Hebbian learning is usually used for biologically plausible models.

Competitive Learning

E({mi }f:1|X)= Zt Zi bfr

= t H t
.

<]

i

0 otherwise X,

btxt i
Batch k-means:m =<t "' .\
. 3 b Ox
Online k-means:

OE" @
Amij % ol 7 77bit(: _mij) >
6m,j X,
4
//
Initialize m;,i = 1,...,k, for example, to &£ random x!
Repeat

For all &' £ X in random order
i — argmin; ||" — m;||
m; —m; +n(x' —m;)
uUntil m; converge

Winner-take-all
network

Ad};\ptive Resonance The(S ry SOM Overview

SOM is based on three principles:

® Incremental; add a new cluster if

e Competition: each neuron calculates a discriminant function.
not covered; defined by vigilance, e

The neuron with the highest value is declared the winner.

e Unsupervised learning such as SOM require redundancy in the
data.

p T
X X, “ e Cooperation: Neurons near-by the winner on the lattice get a

b th - m,.H — _”,‘,ild‘xt - m,H chance to adapt.

m,,, < Xt if bl_ >p) e Adaptation: The winner and its neighbors increase their

Am, = 77()(t i ml_) otherwise Rl discriminant function value relative to the current input.

oxb Subsequent presentation of the current input should result in
®] _ enhanced function value.
(Carpenter and Grossberg, 1988) 1 Redundancy in the input is needed!
’ 5
Redundancy, etc. Redundancy, etc. (cont’d)
Pl e . -ﬁ " L ":I..
b A L % ’ e |

e The following are intimately related:

— Redundancy

— Structure (or organization)

— Information content relative to channel capacity Lot Riaht
e ig

Structure No Yes

Redundancy No Yes

Info<<Capacity No Yes

Consider each pixel as one random variable.

Redundancy, etc. (cont’d) Self-Organizing Map (SOM)
* ° 2D SOM Layer

09 16

08 M : e — i —

07

12
06

05
08

04

03 06

02 . 04

o1 02 W.= W W,

0

0
0 01 02 03 04 05 06 07 08 09 1 0 02 04 06 08 1 12 14 16 18

Left | Right =% %, toput

Structure No Yes Kohonen (1982)

Redundancy No Yes
e 1-D, 2-D, or 3-D layout of units.

Info<<Capacity No Yes

. . . e One weight vector for each unit.
Consider each axis as one random variable.

e Unsupervised learning (no target output).

SOM Algorithm SOM Learning

1. Randomly initialize weight vectors w;

SOM lattice

2. Randomly sample input vector x ()
3. Find Best Matching Unit (BMU):

i(x) = argmin; ||x — w;|
4. Update weight vectors:

wj «— w; +nh(j,i(z))(x — wj) vector

7 : learning rate

Input Space
h(j,i(x)) : neighborhood function of BMU.

5. Repeat steps 2 — 4. e Weight vectors can be plotted in the input space.

o Weight vectors move, not according to their proximity to the input
in the input space, but according to their proximity in the lattice.

10 11

i SeIf-Organizing Maps

Typical Neighborhood Functions

Gaussian Neighborhood

exp(-(X"x+y*y)2) ——

* Units have a neighborhood defined; m; is “between” m, ;

and m,,, and are all updated together

® One-dim map:

(Kohonen, 1990)

Am, :ne(l,i)(xt —m,)
. e Gaussian: h(j,i(x)) = exp(—||rj — r;(,[|*/20?)
1 [—i
e(/,i)=2—ex —(2—2) e Flat: h(j,i(x)) = 1if |[r; — r;j(4)|| < o, and O otherwise.
o o)
e 0 is called the neighborhood radius.
_ e r; is the location of unit j on the lattice.
X
- 13

// Vi e LN Y sl

.

Radial-Basis Functions

e Locally-tuned units:

RBF

e Input x to p: cluster centers m and radius (variance) s are estimated.

e p to output weights w can be calculated in one shot using pseudo inverse
(output units are usually linear units). . RBF activation values (each row

. 0 2 in P is the RBF activation values generated from each input vector), H
Pl —exp h RBF units, m output units.
h— W
25h P11 P12 o P1H w1 Y1
P21 P22 o P2 H w2 Y2
Pn1 Pn2 o PnH wWH Ym
Pw =y
.......... w = P_ly,ifn = H
H
T\ "1 T
y :ZWhp;‘i‘WO W—(P) P y,ifin > H
h=1

e Other iterative methods also exist (see next few slides).

::;:;f""""/ % 7 e VRt VAV

Training RBF

e Hybrid learning:
e First layer centers and spreads:
Unsupervised k-means

e Second layer weights:
Supervised gradient-descent

e Fully supervised
® (Broomhead and Lowe, 1988; Moody and Darken, 1989)

10

/ 7 e S A

Learning Vector Quantization

® H units per class prelabeled (Kohonen, 1990)
® Given x, m; is the closest:

Amizn(t—mi) if label(x")=labelm,)
Am,z—n(xt—m,) otherwise

20

Regression

E({mh'sh'wih}f,h IX)Z o

H
t t
Y, = 2 I,Wihph TWw

;UZ(rf —y bt
0 ”Z{Z(ﬂ y)N,h}pﬁ b ;m”’)

As, = { ¥

mH

11

