Why Reduce Dimensionality?

® Reduces time complexity: Less computation

Dimensionality Reduction

e Turquoise slides: Alpaydin

o Numbered blue slides: Haykin, Neural Networks: A

Comprehensive Foundation, Second edition, Prentice-Hall, Upper ® Reduces space complexity: Less parameters
Saddle River:NJ, 1999. ® Saves the cost of observing the feature
e Unnumbered blue slides: None of the above. e Simpler models are more robust on small datasets

®* More interpretable; simpler explanation

e Data visualization (structure, groups, outliers, etc) if
plotted in 2 or 3 dimensions
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Feature Selection vs Extraction Subset Selection
® Feature selection: Choosing k<d important features, * There are 29 subsets of d features
ignoring the remaining d — k ® Forward search: Add the best feature at each step

e Set of features F initially @.

e At each iteration, find the best new feature
j=argmin, E(FUX;)

original x;, i =1,...,d dimensions to e Addx;to Fif E(FUX;)<E(F)

Subset selection algorithms
® Feature extraction: Project the

new k<d dimensions, 2, | =1k

Hill-climbing O(d?) algorithm

Backward search: Start with all features and remove
Principal components analysis (PCA), linear one at a time, if possible.

discriminant analysis (LDA), factor analysis (FA) Floating search (Add k, remove /)



Motivation
Principal Components Analysis (PCA)

" Gloud.dat | -

Note: () means eigenvector matrix of the covariance matrix, in
Haykin slides. N

e How can we project the given data so that the variance in the

projected points is maximized?

Eigenvalues/Eigenvectors
g g Eigenvector/Eigenvalue Example

e For a square matrix A, if a vector x and a scalar value \ exists T

so that s L |
(A — )\I)x =0

then x is called an eigenvector of A and )\ an eigenvalue.

e Note, the above is simply

Ax = \x

e An intuitive meaning is: x is the direction in which applying the

linear transformation A only changes the magnitude of x (by \) Red: original data x

but not the angle.

Green: projected data using A = { 2 i’ }

o There can be as many as n eigenvector/eigenvalue foran n X n

Blue: Eigenvectors v1=(0.91, 0.42), v2=(-0.76,0.65),
A1 = 5.3, Ao = —1.3. Octave/Matlab code: [V, Lamba]=eig (A)

matrix.
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Magenta: A times eigenvectors.



Eigenvector/Eigenvalue Example 2

Red: original data x

Green: projected data using A = [ i 2 }

Blue: Eigenvectors; Magenta: A times eigenvectors.

A is a symmetric matrix, so eigenvectors are orthogonal.
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® Maximize Var(z) subject to | |w||=1

maxw, Zw, — a(W1TW1 —1)

Wy

Iw, = aw, thatis, w, is an eigenvector of 3
Choose the one with the largest eigenvalue for Var(z) to be max
e Second principal component: Max Var(z,), s.t., | |w,| |=1 and
orthogonal to w,

maxw,=w, — a(wng —1)— ﬂ(wgw1 - 0)
)

2w, =aw,thatis, w, is another eigenvector of 3
and so on.

What PCA do

 Principal Components Analysis (PCA)

® Find a low-dimensional space such that when x is
projected there, information loss is minimized.

® The projection of x on the direction of wis: z= w'x
® Find w such that Var(z) is maximized
Var(z) = Var(w’x) = E[(w'x — w'u)?]
= E[(w'x — w'u)(w'x — w'u)]
= E[w'(x — p)(x — p)"w]
=w'E[(x—p)(x-p)Tw=w"3 w
where Var(x)= E[(x — pu)(x —u)"] = 3

es

Z=W'(x—m)
where the columns of W are the eigenvectors of 3, and m
is sample mean

Centers the data at the origin and rotates the axes
A A
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v e IV s (a) Scree graph for Optdigits
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How to choose k ?

Proportion of Variance (PoV) explained

AtA et 4
A+, 4+ A 4+ A

when A are sorted in descending order
Typically, stop at PoV>0.9
Scree graph plots of PoV vs k, stop at “elbow”

Optdigits after PCA
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PCA: Usage

e Project input x to the principal directions:
a= QTX.
e We can also recover the input from the projected point a:
x=(Q")'a=Qa.

e Note that we don’t need all m principal directions, depending on
how much variance is captured in the first few eigenvalues: We

can do dimensionality reduction.



PCA: Dimensionality Reduction PCA: Total Variance

e Encoding: We can use the first [ eigenvectors to encode x. e The total variance of th emn components of the data vector is

T T
[a1,a2,...,a;]" =[q1,q92,...,q1]" x. m m
E O'JQ- = E >‘j'
e Note that we only need to calculate [ projections a1, a2, ..., aj, — —
Jj= J=

where [ < m.
e The truncated version with the first [ components have variance

e Decoding: Once [a1, a2, ..., a;]” is obtained, we want to
reconstruct the full [ 1, 2, ..., 27, ..., Tm] " . L !
§ : 2 § :
_ T “ g, — >‘j'
x = Qa =~ [q1,q2, ., qi][a1, a2, ..., ] =% — 7L -
j= j=

Or, alternatively
e The larger the variance in the truncated version, i.e., the smaller

S T . . -
X = Q[al’ az,...,ar, 0,0,...,0 ] . the variance in the remaining components, the more accurate the
——

imensionality r ion.
m — [ zeros dimensionality reductio

PCA Example |
Factor Analysis

® Find a small number of factors z, which when combined
generate x :
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s o 05 1 15 2 where z,j=1,..kare the latent factors with

line 1

X =y iy Hy 7 dE

inp=[randn (800,2)/9+0.5; randn (1000, 2) /6+ones (1000,2) ] ; E[ z,1=0, Var(z)=1, Cov(z;, z)=0, i # ],
g; are the noise sources
E[ € 1=y, Cov(g;, €) =0, i #j, Cov(g;, z) =0,

Q- [ 0.70285 —0.71134 }
and v; are the factor loadings

0.71134 0.70285

| 0.00000 0.02161

[ 0.14425 0.00000 ]
A_
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PCA vs FA

® PCA Fromxtoz z=WT(x—p)

° FA Fromzto x X—u=Vz+eg
X X, X, z, z, z,

=00 O 00 O.f

X

w \4 w

il variables
variables X

Z z -4

1 2 Zk X X, X,
PCA FA
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,/_\h o B —
ultidimensional Scaling

® Given pairwise distances between N points,
d.,ij=1,..,N

UI

place on a low-dim map s.t. distances are preserved.

ez=g(x|9) Find @ that min Sammon stress

wovo-g
_y-lokx Ié’)—f(rxs Do
r,s X =X
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Factor Analysis

® In FA, factors z;are stretched, rotated and translated to
generate x

A
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Map from CIA - The World Factbook: http://www.cia.gov/

Lecture Notes for E Alpaydin 2010 Introduction to Machine Learning 2e © The MIT Press (V1.0) 16



Manifolds Manifold Learning

c
Lars H. Rohwedder, Wikimedia Commons
Cheoi, et. al B
e A topological space that is locally Euclidean (flat, not curved). o Patern Recoaniton (2000)
e Dimensionality of the manifold = dimensionality of the Euclidean space it e A: 2D manifold embedded in 3D embedding space.

resembles, locally.

B: Data points extraced from A.
— Straight line, wiggly curves, etc. are 1D manifolds.

) o C: Recovered 2D structure.
— Flat plane, surface of sphere, etc. are 2D manifolds.

) . ) e Task: recover C from B, without knowledge of A.
e Detecting curvature of space: sum of internal angles of triangle = 180°?

// R e SRS
Geodesic Distance

Isomap

® Geodesic distance is the distance along the manifold that
the data lies in, as opposed to the Euclidean distance in
the input space

e Geodesic
. distance

Geodesic distance = Shortest path.

Luclidean

! e A: Manifold with two points.
distance Sy

S e B: Euclidean distance between the two points.
e C: Geodesic distance between the two points.
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Isomap

Instances r and s are connected in the graph if
| | x-x5| | <€ or if x*is one of the k neighbors of x”
The edge length is ||x*-x5||

For two nodes r and s not connected, the distance is equal to
the shortest path between them

Once the NxN distance matrix is thus formed, use MDS to find
a lower-dimensional mapping

/ S : e

Locally Linear Embedding

1
2.

5

Given x" find its neighbors x*,,

Find W, that minimize
2

E(WI[X)=D X = > W, x:,
Find the new coordinates z"that minimize

2
EzIW)=> |2/ => W, 2,
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25:

-100 -50 0 50 100 150

Matlab source from http://web.mit.edu/cocosci/isomap/isomap.html
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X Space Z space
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-3.5 -3 -2.5 -2 -1.5 -1 -0.5 [0] 0.5 1 1.5

Matlab source from http://www.cs.toronto.edu/~roweis/lle/code.html

Lecture Notes for E Alpaydin 2010 Introduction to Machine Learning 2e © The MIT Press (V1.0) 27



