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— How did these temporal functions emerge/evolve?
* Joint work with Ji Ryang Chung and Jaerock Kwon

Time, in the Context of Neural Feedforward Networks
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Recurrent Networks Research Questions
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- From recurrent (past) to predictive (future).
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o Neuroevolution: evolve neural networks.
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Part I: Recollection



Recollection in Feedforward

Networks?

Is it possible for a feedforward network to show memory

capacity?
e What would be a minimal augmentation?

e Idea: allow material interaction, dropping and

detecting of external markers.

Three Network Types Compared

Compare three different networks:
1. Feedforward
2. Recurrent

3. Dropper/Detector (with Feedforward net)

Memory Task: Catch the Balls
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cf. Beer (2000); Ward and Ward (2006)
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e Agent with range sensors move left/right.

e Must catch both falling balls.

e Memory needed when ball goes out of view.

1. Feedforward Network

5 distance sensors

e Standard feedforward network.
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hidden neurons

input neurons



2. Recurrent Network

5 distance sensors
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e Standard recurrent network (Elman 1991).

Results: Feedforward

Catch Performance (%)
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On average, only chance-level performance (50%).

e Always move to the fast ball.

e Randomly pick fast or slow ball and approach it.

3. Feedfwd Net + Dropper/Detector

if 0;> 6,
DropMarker = True

else,

DropMarker = False

Feedforward network plus:
e Extra output to drop markers.

e Extra sensors to detect the markers.

Results: Recurrent vs. Dropper
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Dropper Network
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e No difference in performance between

dropper/detector net (right) and recurrent network

(left).
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Part | Summary

o Reactive, feedforward networks can exhibit
memory-like behavior, when coupled with minimal

material interaction.

e Adding sensors and effectors could have been

easier than adjusting the neural architecture.

e Transition from external olfactory mechanism to

internal memory mechanism?

e Successfully extended to 2D foraging task.

Emergence of Prediction in RNN?

Can prediction emerge in internal state dynamics?

e Idea: Test if (1) internal state dynamics is
predictable in evolved recurrent nets, and (2) if that
correlates with performance. 19

Part Il: Prediction

Largely based on Kwon and Choe (2008)

Task: 2D Pole Balancing

Anderson (1989)

e Standard 2D pole balancing problem.
e Keep pole upright, within square bounding region.

e Evolve recurrent neural network controllers.
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Measuring Predictability

x(t+1)

xX(t—N+1)

Train a simple feedforward network to predict the

internal state trajectories.

Measure prediction error made by the network.
— High vs. low internal state predictability (ISP)
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Experiment: High vs. Low ISP
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. Train networks to achieve same performance mark.

. Analyze internal state predictability (ISP).

. Select top (High ISP) and bottom (Low ISP) five, and
compare their performance in a harder task. 2

High ISP

Low ISP

Example Internal St

e Typical examples of high (to

e High ISP=predictable, Low |

ate Trajectories

p) and low (bottom) ISP.

SP=unpredictable.

e Note: Both meet the same performance criterion!

Results: Internal State Predictability

(ISP)

Internal State Predictability

Prediction Success Rate (%)

Evolved agent sorted by th

e Trained 130 pole balancing agents.

e prediction rate

o Chose top 10 highest ISP agents and bottom 10 lowest ISP.
- high ISPs: u = 95.61% and o = 5.55%.

— low ISPs: 4 = 31.74% and o

= 10.79%.
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Performance and Int. State Dyn.

Performance and Internal State Dynamics
6000

5000 -+
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e Made the initial conditions in the 2D pole balancing
task harsher.

e Performance of high- and low-ISP groups compared.

High-ISP group outperforms the low-ISP group in the
changed environment.
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Examples of cart x and y position
from high ISP
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e Behavioral trajectories of x and y positions show

complex trajectories.
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Behavioral Predictability

Behavioral Predictability

%
)

g j—

rRd

g

60
g s ‘ i h
8  Hi
3 40 s T g
T ULow
£ 30
3 20
13
& 10

o

xpos ypos

aaaaaaaaaaaa

e Success of high-ISP group may simply be due to

simpler behavioral trajectory.

e However, predictability in behavioral predictability is

no different between high- and low-ISP groups.
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Examples of cart x and y position

from low ISP

e Behavioral trajectories of x and y positions show

complex trajectories.
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Part Il Summary

e Simulations show potential evolutionary advantage

of predictive internal dynamics.

e Predictive internal dynamics could be a precondition

for full-blown predictive capability.
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Discussion
Olfactory system? Hippocampus?
No memory Memory (External) Memory (Internal) Predictive dynamics
B H%H
L]
Present Past Future

e From external memory to internalized memory (cf.
Rocha 1996).

e Analogous to olfactory vs. hippocampal function?

e Pheromones (external marker) vs. neuromodulators

(internal marker)?
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Wrap-Up

30

Discussion (cont’d) & Future Work

conscious zombie

e

e Implications on the evolution of internal properties
invisible to the process evolution.

e Future work: (1) actual evolution from
dropper/detector net to recurrent net; (2) actual
evolution of predictor that can utilize the predictable

dynamics. 3



Conclusion

From reactive to contemplative to predictive:

e Recollection: External material interaction can be a
low-cost intermediate step toward recurrent

architecture.

e Prediction: Predictable internal state dynamics in
recurrent neural nets can have an evolutionary edge,

thus prediction can and will evolve.
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Knife-Ed
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?Mayerich et al. (2008)
o Connectomics for the whole mouse brain.

° 1um3 resolution, 2TB of data per brain.
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Other Projects

e Brain connectomics project
e Visual cortex modeling project

e Autonomous semantics through sensorimotor

grounding

e efc.
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Visual Cortical Modeling

Computational Maps
in the
Visual Cortex

Risto Miikkulainen « James A. Bednar
Yoonsuck Choe * Joseph Sirosh

Choe and Miikkulainen (2004); Miikkulainen et al. (2005)
e Visual cortical development and function

e http://topographica.org project (James A. Bednar,

U of Edinburgh; Risto Miikkulainen, U of TX, Austin)
36



Autonomous Internal Semantics

Choe and Smith (2006); Choe et al. (2007)
e How does the brain understand itself?

e How do neurons understand the coding without

looking outside?

e Motor function turns out to be key to grounding.
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