Neural Networks

e Threshold units

o Gradient descent

o Multilayer networks

e Backpropagation

e Hidden layer representations
e Example: Face Recognition
e Advanced topics

e And, more.

Blue slides: from Mitchell. Orange slides: from Alpaydin.

Levels of analysis (Marr, 1982)
Computational theory
Representation and algorithm
Hardware implementation

Reverse engineering: From hardware to theory
Parallel processing: SIMD vs MIMD

Neural net: SIMD with modifiable local memory
Learning: Update by training/experience

Networks of processing units (neurons) with
connections (synapses) between them

Large number of neurons: 1010
Large connectitivity: 10°

Parallel processing

Distributed computation/memory
Robust to noise, failures

Biological Neurons and Networks

e Neuron switching time ~ .001 second (1 ms)
e Number of neurons ~ 1019

e Connections per neuron ~ 10%—?

® Scene recognition time ~ .1 second (100 ms)

e 100 processing steps doesn’t seem like enough

[—] much parallel computation

Artificial Neural Networks Biologically Motivated (or Accurate) Neural Networks

e Spiking neurons

e Complex morphological models

e Detailed dynamical models

Many neuron-like threshold switching units (real-valued) e Connectivity either based on or trained to mimic biology

Many weighted interconnections among units o Focus on modeling network/neural/subneural processes

Highly parallel, distributed process e Focus on natural principles of neural computation

Emphasis on tuning weights automatically: New learning e Different forms of learning: spike-timing-dependent plasticity,

algorithms, new optimization techniques, new learning principles. covariance learning, short-term and long-term plasticity, etc.
3 4

When to Consider Neural Networks

s

Input is high-dimensional discrete or real-valued (e.g. raw sensor

input)
Output is discrete or real valued

Output is a vector of values

Possibly noisy data (a) ALVINN (b) http://yann.lecun.com

Long training time (may need occasional, extensive retraining) Examples:

Form of target function is unknown ® Speech synthesis

_ . o Handwritten character recognition (from yann.lecun.com).
Fast evaluation of learned target function

e Financial prediction, Transaction fraud detection (Big issue lately)
Human readability of result is unimportant
e Driving a car on the highway

Perceptrons

- O

n
Lif X ow. x:>0
0= =

-1 otherwise

1 ifwo4+wix1 +---+wnxn >0

—1 otherwise.

Sometimes we’ll use simpler vector notation:

. 1 ifd-Z>0
o(T) =
—1 otherwise.

Boolean Logic Gates with Perceptron Units

W1=1 Wi1=1 Wi=—1
— — .
W2=1 W2=1

Russel & Norvig

® Perceptrons can represent basic boolean functions.

o Thus, a network of perceptron units can compute any Boolean

function.

What about XOR or EQUIV?

Hypothesis Space of Perceptrons

n
Lif X ow: x:>0
0= i=0 171

-1 otherwise

{0

e The tunable parameters are the weights wqg, w1, ..., Wn, so the
space H of candidate hypotheses is the set of all possible
combination of real-valued weight vectors:

H = {w|w € R("TD}

What Perceptrons Can Represent

11 Output = 1
-1 t
Slope = -W0
w0 _t] Wi
10 —\) " wl
W
u |

\1/ 10
Output=0fs

Perceptrons can only represent linearly separable functions.

e Output of the perceptron:
Wo X Ig + W71 X I1 —t > 0, thenoutputis 1
Wo X Igp + W1 X I1 —t <0, then outputis — 1

The hypothesis space is a collection of separating lines.

10

Geometric Interpretation

11 Output = 1
-1 t
Slope = -WO0
w0 t Wi
10 O/" Wl
W
11

Output=0fs

e Rearranging
Wo X Igp + W71 X I1 —t > 0, thenoutputis 1,

we get (if W1 > 0)

—Wy t
X Iop + —

I > ,
VT W

where points above the line, the output is 1, and -1 for those below the line.

Compare with

—Wy t
X+ —.
wit Wy

S
|

Limitation of Perceptrons

11 Output = 1

Slope = -WO0

w0 _t] W1
10 O/’ ™~ Wi

11 ‘

Output=0fs \ll

10

o Only functions where the -1 points and 1 points are clearly
separable can be represented by perceptrons.

o The geometric interpretation is generalizable to functions of n
arguments, i.e. perceptron with 7 inputs plus one threshold (or
bias) unit.

13

The Role of the Bias

_t o 10
Wi Slope = —W0
wi

e Without the bias (f = 0), learning is limited to adjustment of the
slope of the separating line passing through the origin.

e Three example lines with different weights are shown.

12

Generalizing to n2-Dimensions

n=/[abc]T

L_»(’_CMO’ZO)
y @/
x
http://mathworld.wolfram.com/Plane.html
e 7= (a,b,0), = (z,y,2),20 = (0, Y0, 20)-

e Equation of a plane: 71 - (£ — zp) = 0

e Inshort, ax + by + cz + d = 0, where a, b, c can serve as
the weight, and d = —17 - 2 as the bias.

e For n-D input space, the decision boundary becomes a
(n — 1)-D hyperplane (1-D I%?s than the input space).

Linear Separability Linear Separability (cont’d)

o
Il 11 11
10 ’?
Linearly—separable Not Linearly—separable (=1
I 10 10
AND OR XOR

e For functions that take integer or real values as arguments and

output either -1 or 1. e Perceptrons cannot represent XOR!

e Left: linearly separable (i.e., can draw a straight line between the e Minsky and Papert (1969)

classes).

e Right: not linearly separable (i.e., perceptrons cannot represent

such a function)

16

XOR in Detail Learning: Perceptron Rule

Iy I XOR » . 1
Slope = -W0 2
1 0 0 -1 t /(Wi .

O
0 1 1 ‘ |

n
2 1if X w:x:>0
0= Pl At
3 1 0 1 -1 otherwise
10 n
4 Output=0fs \l/ \l/

1 1 -1
e The weights do not have to be calculated manually.

xp=1

Wo X Ig + W1 x Iy —t > 0, then output is 1:
e We can train the network with (input,output) pair according to the

1 —t<0 — t2>0
following weight update rule:
2 Wi—-t>0 — Wi >t
3 Wo—t>0 — W()>t wz<_w7,+77(t_o)m7,
— <

4 Wo+ Wi —t<0 - Wo+Wist where 1) is the learning rate parameter.

2t < W, %1% t (from 2, 3, and 4), but ¢ > 0O (from 1), a o .
< . (_) T Wi < tiro), butt = U) e Proven to converge if input set is linearly separable and 7) is

contradiction. small

17 18

Learning in Perceptrons (Cont’d) Learning in Perceptron: Another Look

y////,r" p w=(a,b)
w; «— w; +n(t — o)z, ‘k o
e Whent = o, weight stays. — N+ .
e Whent = 1 and o = —1, change in weight is: - -
n(l—(=1))z; >0
. . - o e The perceptron on the left can be represented as a line shown on
if z; are all positive. Thus w - & will increase, thus eventually, .
. the right (why? see page 14).

output o will turn to 1.

e Whent — —1 and o = 1, change in weight is: e Learning can be thought of as adjustment of w0 turning toward the

input vector Z: W «— W + n(t — o)Z.
n(—=1—1)z; <0 . . .
e Adjustment of the bias ¢ moves the line closer or away from the
if z; are all positive. Thus w - & will decrease, thus eventually,

origin.
output o will turn to -1.
19 20
Another Learning Rule: Delta Rule Gradient Descent
® The perceptron rule cannot deal with noisy data. -
o The delta rule will find an approximate solution even when input ! S
° ‘\\\‘§\‘\\\‘\“‘\:‘:\\‘\‘\\‘“\\““““:‘ S
set is not linearly separable. . ““*::\“\:‘\\‘e‘\\\:-“g{:g:}g;{.:::::o.
e Use linear unit without the step function: o(Z) = w0 - . 2
e Want to reduce the error by adjusting w:
1 e Want to minimize by adjusting
E'(u_f) = — (td — Od)2 - - 1 2
2 dz: w: E(W) = 3 3 4ep(ta — 0a)
eD
e Note: the error surface is defined by the training data D). A
different data set will give a different surface.
e F(wp, w1) is the error function above, and we want to change
(wo, w1) to position under a low F.
21

22

Gradient Descent (Cont’d)

Gradient
OFE OF oF
VE[W] = ,
Owp ~ Owq Own,
Training rule:
AW = —nV E[w]
i.e.,
oF
Aw; = —n
8wi
23
Gradient Descent (Cont’d)
OF o 1
pue T Bwa 2o
_ 1 0 2
= 3 Z Tw(td — 0q)
= Z(td - od)—(td — T - ay)
] 8w1
OF
3 = > (ta—o0a)(—zia)
w;
d
Since we want Aw,; = —naw Aw; =00 (tg — 04)x; 4.

25

Gradient Descent (Example)

line 1

X R
0
002

e Gradient points in the maximum increasing direction.
o Gradient is prependicular to the level curve (uphill direction).

e F(wp, w1) is the error function above, so

VE = (gfo, gf), a vector on a 2D plane.

24

Gradient Descent: Summary
Gradient-Descent (training-examples, n)

Each training example is a pair of the form <f , t> , where X is the
vector of input values, and t is the target output value. 1) is the
learning rate (e.g., .05).

e |nitialize each w; to some small random value

e Until the termination condition is met, Do
— Initialize each Aw; to zero.
- Foreach (Z, t) intraining.examples, Do
* Input the instance ' to the unit and compute the output o
* For each linear unit weight w;, Do

Aw; «— Aw; +n(t — o)z,
— For each linear unit weight w;, Do

26

Gradient Descent Properties

Gradient descent is effective in searching through a large or infinite /1 :

e [contains continuously parameterized hypotheses, and

e the error can be differentiated wrt the parameters.
Limitations:

® convergence can be slow, and

e finds local minima (global minumum not guaranteed).

27

Standard and Stochastic Grad. Desc.: Differences

e In the standard version, error is defined over entire D.

e In the standard version, more computation is needed per weight
update, but) can be larger.

e Stochastic version can sometimes avoid local minima.

29

Stochastic Approximation to Grad. Desc.

Avoiding local minima: Incremental gradient descent, or stochastic
gradient descent.

e Instead of weight update based on all input in 1D, immediately
update weights after each input example:

Aw; = n(t — o)z,

instead of

Aw; =n Y (tq — o0a)wi,
deD

e Can be seen as minimizing error function

Ea() = %(td ~ og)2.

28

Summary

Perceptron training rule guaranteed to succeed if
e Training examples are linearly separable
e Sufficiently small learning rate)

Linear unit training rule using gradient descent

e Asymptotic convergence to hypothesis with minimum squared
error

e Given sufficiently small learning rate 0
e Even when training data contains noise

e Even when training data not separable by H

30

Exercise: Implementing the Perceptron Multilayer Networks

e |tis fairly easy to implement a perceptron.

® You can implement it in any programming language: C/C++, etc.

e Look for examples on the web, and JAVA applet demos.
e Differentiable threshold unit: sigmoid

1
1+ exp(—y)’

o(y) =
Interesting property: dzi(yy) =o(y)(1 —oa(y)).
e Output:

e Other functions:
exp(—2y) — 1

exp(—2y) + 1
31 32

tanh(y) =

Multilayer Networks and Backpropagation Error Gradient for a Sigmoid Unit

head hid) who'd hood e

) o 1
T w2 Z(td ~oa)’

de D

8’(1]1'

Q

2
tqg — og4
ow; ()

(ta — oa)

Il
N[~ N =
S\

~[
\v}
—~

~

u

|

Q

&
~

Q

+sigm(-x-y+1.13)-1)
054

i

(ta — oa) <— 2&)

50 Slputz aod 87’L8td
55 = — Z(td — 04)
7 Onety Ow;

I
~[1

(a) One output (b) Two hidden, one output

® Another example: XOR
33 34

Error Gradient for a Sigmoid Unit

From the previous page:

oFE Oog Onety
_— _ _ t, —
ow; Xd:() Onety Ow;
But we know:
Oog do(nety)
= = Od(l — Od)
Onety Onety
Onetq oW - Zg)
8wi awl ’
So:
OF
- = — Z (td — Od)Od(l — od)azi7d
Wi deD
35
The) Term
e For output unit:

6k «— Ok(l — Ok)l\(tk — Ok),

o’ (nety,) Error

o For hidden unit:

op — on(1—op) E Wih Ok

v k
€outputs
o' (nety) P — _
Backpropagated error

e Insum, ¢ is the derivative times the error.
o Derivation to be presented later.

37

Backpropagation Algorithm

Initialize all weights to small random numbers.

Until satisfied, Do

® For each training example, Do

1.

Input the training example to the network and compute the network
outputs

. For each output unit k

O — Ok(l — Ok)(tk — Ok)

For each hidden unit i

6n — on(1l = 0n) 2 kcoutputs WkhOk
Update each network weight w; ;

wj; +— wj; + Awj,; where

Awj; =ndjx;.

Note: w ;; is the weight from i to j (i.e., w; ;).

36

Derivation of Aw

e Want to update weight as:

0E

)
8?1)]'1'

iji = —n

where error is defined as:

Ba@) =3 3 (- o)

k€outputs

e Givennel; = > wj;xi,

0FE, B OE, Onet;
8wji n 8net]~ E)wji

e Different formula for output and hidden.

38

Derivation of Aw: Output Unit Weights

. 8Ed o 8Ed 8netj

From the previous page, dw;; . Omet; Ow;;
e First, calculate ;ﬁ:
netj

6Ed . 8Ed 80j
Onet; a 0oj Onet;

OBy 01 ST (b —on)?
80j 8oj 2 kEoutputs
0 1 5
— — Z(t: — 0.
do; 2(j = 05)
1 a(t; —o5)
= 2-(1 _Oj)—]aoj ’
= —(tj —oj)
39

Derivation of Aw: Output Unit Weights

From the previous page:

8Ed . 6Ed an
Onet; a do;j Onet;

. onet; o W:1.T
Since 8wjij = Zgwjjik E =g,
0F, _ OE, Onet;
8wji 8netj (‘?wji
= —(tj —05)0i(1 —0;) =z
R J J j .7/ 1

dj=errorxao’(net) input

41

= —(t; —0j)0;(1 —0j).

Derivation of Aw: Output Unit Weights

From the previous page,

dE, _ OE4 99j — —(t; —0;) 905 .
Onet; = 0Oo; Onet; J J/ Onet;
N loulate —22—: Since 0, = t;), and
® Next, calculate 557725 Since 0; = o(net;),an
/ _— . .
o'(net;) = 0;(1 — 0j),
0o;
= 0j(1-0j).
Onet

Putting everything together,

8Ed aEd 00,
S = ao amer. = (i —0i)oj(1 = 0j).
net; doj Onet;

40

Derivation of Aw: Hidden Unit Weights

. 6Ed . 8Ed 8n6tj o 6Ed .
Start with 81031 - anetj 8wﬂ - 8netj Ly
Onet; ke Downstream(s) Onety, Onet;
Onet
- Z _57““(9 tk.
k€ Downstream(j) net;
Onety, 0oj
- Z —Ok Do. Onet
k€ Downstream(j) 0j net;
00;
D S
k€ Downstream(j) net;
= Z —5kwkj Oj(l —Oj)
k€ Downstream(j) S—
o’ (net)
42

(1)

Derivation of Aw: Hidden Unit Weights

Finally, given
OF, OF, anetj 0F 4
= = €T;
3w_77; 67162‘3_7' 811]77 anet]— v
and SE
d
e, — > —Orwi; 05 (1 — 05),
J k€ Downstream(j) N—~—r
o/ (net)
OFE4
Awj; =Ny =nlo;(1 —o0j) Z Opwrj] T4
Wji —’—JREDownstreuTn(j)
o’ (net) ~
error
%)
43

Backpropagation: Properties
e Gradient descent over entire network weight vector.
o Easily generalized to arbitrary directed graphs.

e Will find a local, not necessarily global error minimum:

— In practice, often works well (can run multiple times with
different initial weights).

e Often include weight momentum
Awi,j (n) = 7753‘%1',]' + aAwi,j (n — 1).
o Minimizes error over training examples:
— Will it generalize well to subsequent examples?
e Training can take thousands of iterations — slow!

e Using the network after training is very fast.
45

Extension to Different Network Topologies

e Arbitrary number of layers: for neurons in layer 1m:

dr = or(1 — or) Z Wer08S.

s€layer m+41

e Arbitrary acyclic graph:

Or = or(1 — o) Z WeroS.

s€Downstream(r)

44

Representational Power of Feedforward Networks

e Boolean functions: every boolean function representable with two
layers (hidden unit size can grow exponentially in the worst case:
one hidden unit per input example, and “OR” them).

e Continous functions: Every bounded continuous function can be
approximated with an arbitrarily small error (output units are

linear).

e Arbitrary functions: with three layers (output units are linear).

46

H -Space Search and Inductive Bias

® The space is continuous, unlike decision tree or

general-to-specific concept learning algorithms.

e Inductive bias:

— Smooth interpolation between data points.

e [{-space = n-D weight space (when there are n weights).

47

Learned Hidden Layer Representations

Learning Hidden Layer Representations

Inputs Outputs
Input Hidden
Values
10000000 — .89 .04 .08 —
01000000 — .01 1 .88 —
00100000 — .01 .97 27 —
00010000 — .99 .97 .71 —
00001000 — .03 .05 .02 —
00000100 — .22 .99 .99 —
00000010 — .80 .01 .98 —
00000001 — .60 .94 .01 —

Output

10000000
01000000
00100000
00010000
00001000
00000100
00000010
00000001

49

Inputs Outputs
Input Output
4’ ,,l\ A w"»% 10000000 — 10000000
A AN
'0»“' "t‘ 01000000 — 01000000
Ollﬂ\ /‘\\\.
NN | 00100000 — 00100000
/ N\
00010000 — 00010000
00001000 — 00001000
00000100 — 00000100
00000010 — 00000010
00000001 — 00000001
48

Learned Hidden Layer Representations

® Learned encoding is similar to standard 3-bit binary code.

e Automatic discovery of useful hidden layer representations is a
key feature of ANN.

o Note: The hidden layer represseontation is compressed.

Overfitting
Error versus weight updates (example 1) Error versus weight updates (example 2)
0.01 T T T 0.08 = T
I)
0.009 . Training set error A 007 + * Training set etror

Validation set error * ° Validation set error
0008 [1 0.06 ?m“‘it

©
ls,
0007 4 b 005 . 1
. 5 -
g oos W Sooe - 1
5] 2 .
0005 B 003 b0 u
0.004 1 002 ‘
0003 1 001 \“__

0.002

0
0 5000 10000 15000 20000 0 1000 2000 3000 4000 5000 6000
Number of weight updates Number of weight updates

e Error in two different robot perception tasks.
e Training set and validation set error.

e Early stopping ensures good performance on unobserved
samples, but must be careful.

e Weight decay, use of validation sets, use of k-fold
cross-validation, etc. to overcome the problem.

51

Recurrent Networks

® Sequence recognition.

output
e Store tree structure (next
4 de]ay S|Ide)
hidden e Can be trained with plain
/ \ backpropagation.
. e Generalization may not be
mput context

perfect.

53

Alternative Error Functions

Penalize large weights:

DD

deD k€outputs

E(w)

(tka — ora)” + 'YijQ‘i
i,J

Train on target slopes as well as values (when the slope is available):

2
(tkdiokd) +[1,

1
B =Y Y%
2 4epD

kEoutputs

5 <0t"”d -

JjEinputs 85”'(71
Tie together weights:
® e.g., in phoneme recognition network, or

e handwritten character recognition (weight sharing).

52

Recurrent Networks (Cont’d)

‘ ‘ stack ‘ ‘

‘ input ‘ ‘ stack ‘ ‘

® Autoassociation (intput = output)
® Represent a stack using the hidden layer representation.

e Accuracy depends on numerical precision.

54

90kq

o

)]

Applications:
Sequence recognition: Speech recognition
Sequence reproduction: Time-series prediction
Sequence association

Network architectures
Time-delay networks (Waibel et al., 1989)
Recurrent networks (Rumelhart et al., 1986)

36

35

37

Some Applications: NETtalk

Cutput units
{phoneme code)

Hidden units
3

€— T h i|s i e input

NETtalk: Sejnowski and Rosenberg (1987).
Learn to pronounce English text.
Demo

Data available in UCI ML repository

55

Backpropagation Exercise

URL: http://www.cs.tamu.edu/faculty/choe/src/backprop-1.6.tar.gz

Untar and read the README file:

gzip -dc backprop-l.6.tar.gz | tar

xvf -
Run make to build (on departmental unix machines).

Run . /bp conf/xor.conf etc.

57

NETtalk data

aardvark a-rdvark 1<<<>2<<0
aback xb@k-0>1<<0

abacus @bxkxs 1<0>0<0

abaft xb@ft 0>1<<0

abalone (@bxloni 2<0>1>0 O
abandon xb@ndxn 0>1<>0<0
abase xbes-0>1<<0

abash xb@S-0>1<<0

abate xbet-0>1<<0

abatis @bxti-1<0>2<2

e Word — Pronunciation — Stress/Syllable

e about 20,000 words

56

Backpropagation: Example Results

Backprop
0.25 R — &
02 AND B |
: XOR -

Error

0 15 20 25 30 35 40
10,000 Epochs

e Epoch: one full cycle of training through all training input patterns.

® OR was easiest, AND the next, and XOR was the most difficult to
learn.

o Network had 2 input, 2 hidden and 1 output unit. Learning rate
was 0.001.

58

Backpropagation: Example Results (cont’d)

Backprop
0.25

10,000 Epochs

I AND

Output to (0,0), (0,1), (1,0), and (1,1) form each row.

59

v

/

(Le Cun et al, 1989)

27

Backpropagation: Things to Try
How does increasing the number of hidden layer units affect the
(1) time and the (2) number of epochs of training?

How does increasing or decreasing the learning rate affect the

rate of convergence?

How does changing the slope of the sigmoid affect the rate of
convergence?

Different problem domains: handwriting recognition, etc.

60

28

Destructive Constructive
Weight decay: Growing networks
AWi = _nﬁ — 7\’Wi
ow;
v 7\4 2
E = E + Ezwl

Dynamic Node Creation

(Ash, 1989)

Cascade Correlation

(Fahlman and Lebiere, 1989)

30

Summary
® ANN learning provides general method for learning real-valued
functions over continuous or discrete-valued attributed.
o ANNSs are robust to noise.
e [is the space of all functions parameterized by the weights.

e [space search is through gradient descent: convergence to
local minima.

e Backpropagation gives novel hidden layer representations.
e OQverfitting is an issue.

o More advanced algorithms exist.

61

Consider weights w; as random vars, prior p(w)

pw | X)= % W,..p = arg mvgx logp(w | X)

logp(w | X) =logp(X | w)+logp(w)+C

pw)= HP(W,-)Where p(w,)=c- exp{_ %}

E'=E+ 2w
Weight decay, ridge regression, regularization
cost=data-misfit + A complexity

31

