
Test-Driven Development
and
Refactoring

Project 3 Lecture

CPSC 315 – Programming Studio

Fall 2011

Testing

 Discussed before, general ideas all still hold

 Test-Driven Development
− Generally falls under Agile heading
− A style of software development, not just a matter

of testing your code
− Enforces testing as part of the development

process

Test Driven Development
Overview

 Repeat this process:

1.1. Write a new test

2.2. Run existing code against all tests; it
should generally fail on the new test

3.3. Change code as needed

4.4. Run new code against tests; it
should pass all tests

5.5. Refactor the code

Test Writing First

 Idea is to write tests, where each test
adds some degree of functionality

 Passing the tests should indicate
working code (to a point)

 The tests will ensure that future
changes don’t cause problems

Running Tests

 Use a test harness/testing framework
of some sort to run the tests

− A variety of ways to do this, including
many existing frameworks that support
unit tests

− JUnit is the most well-known, but there is
similar functionality across a wide range of
languages

Test framework

 Specify a test fixture
− Basically builds a state that can be tested
− Set up before tests, removed afterward

 Test suite run against each fixture
− Set of tests (order should not matter) to verify various

aspects of functionality
− Described as series of assertions

 Runs all tests automatically
− Either passes all, or reports failures

 Better frameworks give values that caused failure

Mock Objects

 To handle complex external queries
(e.g. web services), random data, etc.
in testing

 Implements an interface that provides
some functionality

− Can be complex on their own – e.g.
checking order of calls to some object,
etc.

− Can control the effect of the interface

Example Mock Object

 Remote service
− Interface to authenticate, put, get
− Put and Get implementations check that

authentication was called
− Get verifies that only things that were “put” can

be gotten.
 As opposed to an interface that just returned

valid for authenticate/put, and returned fixed
value for get.

Successful Tests

 Tests should eventually pass
 You need to check that all tests for that

unit have passed, not just the most
recent.

Refactoring

 As code is built, added on to, it
becomes messier

 Need to go back and rewrite/reorganize
sections of the code to make it cleaner

 Do this on a regular basis, or when
things seem like they could use it

 Only refactor after all tests are passing
− Test suite guarantees refactoring doesn’t

hurt.

Refactoring
Common Operations

 Extract Class
 Extract Interface
 Extract Method
 Replace types with subclasses
 Replace conditional with polymorphic objects
 Form template
 Introduce “explaining” variable
 Replace constructor with “factory” method
 Replace inheritance with delegation
 Replace magic number with symbolic constant
 Replace nested conditional with guard clause

Resources

 Test-Driven Development By Example
− Kent Beck; Addison Wesley, 2003

 Test-Driven Development A Practical Guide
− David Astels; Prentice Hall, 2003

 Software Testing A Craftsman’s Approach
(3rd edition)

− Paul Jorgensen; Auerback, 2008

 Many other books on testing, TDD,
also

