Project 3 Lecture
CPSC 315 - Programming Studio
Fall 2011

Test Driven Development
Overview

Repeat this process:
1. Write a new test

2. Run existing code against all tests; it
should generally fail on the new test

3. Change code as needed

4. Run new code against tests; it
should pass all tests

5. Refactor the code

Testing

Discussed before, general ideas all still hold

Test-Driven Development
Generally falls under Agile heading

A style of software development, not just a matter
of testing your code

Enforces testing as part of the development
process

Test Writing First

Idea is to write tests, where each test
adds some degree of functionality

Passing the tests should indicate
working code (to a point)

The tests will ensure that future
changes don’t cause problems



Running Tests Test framework

* Use a test harness/testing framework © Specify a test fixture
- Basically builds a state that can be tested
Of some sort to run the tests - Set up before tests, removed afterward
- A variety of ways to do this, including * Test suite run against each fixture
many existing frameworks that support - Set of tests (order should not matter) to verify various
unit tests aspects of functionality

- Described as series of assertions

* Runs all tests automatically
- Either passes all, or reports failures

- JUnit is the most well-known, but there is
similar functionality across a wide range of

Ianguages ° Better frameworks give values that caused failure
Mock Objects Example Mock Object
* To handle complex external queries ° Remote service
(e.g. web services), random data, etc. - Interface to authenticate, put, get
in testing - Put and. th implementations check that
authentication was called
‘ Implements an interface that provides - Get verifies that only things that were “put” can
some functionality be gotten.
- Can be complex on their own — e.g. * As opposed to an interface that just returned
checking order of calls to some object, valid for authenticate/put, and returned fixed
etc. value for get.

- Can control the effect of the interface



Successful Tests

* Tests should eventually pass

* You need to check that all tests for that

unit have passed, not just the most
recent.

Refactoring
Common Operations

* Extract Class

° Extract Interface

* Extract Method

* Replace types with subclasses

* Replace conditional with polymorphic objects
° Form template

° Introduce “explaining” variable

* Replace constructor with “factory” method

° Replace inheritance with delegation

* Replace magic number with symbolic constant
* Replace nested conditional with guard clause

Refactoring

As code is built, added on to, it
becomes messier

Need to go back and rewrite/reorganize
sections of the code to make it cleaner

Do this on a regular basis, or when
things seem like they could use it

Only refactor after all tests are passing

- Test suite guarantees refactoring doesn’t
hurt.

Resources

Test-Driven Development By Example
- Kent Beck; Addison Wesley, 2003

Test-Driven Development A Practical Guide
- David Astels; Prentice Hall, 2003

Software Testing A Craftsman’s Approach
(3 edition)
- Paul Jorgensen; Auerback, 2008

Many other books on testing, TDD,
also



