AYA AL™S

CPSC 315 - Programming Studio
Fall 2011

Markup Languages

Idea is to “tag” information to give a sense of its
meaning/semantics
How that is handled is up to reader
Usually separates presentation from structure
Examples:
- HTML.: standard web page information,

interpreted by browsers

- TeX/LaTeX: document specification, style
descriptions determine how it is laid out

Consistent Data Transfer

Transfer of data has become increasingly
important

Can’t assume control of all ways data is
created and used

- Cross-platform, cross-system, etc.

- People want to access data for their own purposes
- People want to use data from several sources
Data may be more complicated than
“traditional” formats would support

- E.g. ASCII text only good for some text documents
Need a more universal means of transferring
data

XML

* eXtensible Markup Language
* Extensible: able to define additional “tags”

- Specific tags and the semantics associated
with them allow specifications of different
languages

* Developed by the World Wide Web Consortium
(W3C) to help standardize internet information
transfer

* Now used as the basis for many specialized
languages
- Each has its own semantic requirements

XML Characteristics XML Document Text

Straightforward to use on the internet * Intermingled character data and markups

Easily processed/parsed * Markups:
Human-readable - Start/End tags (and empty element tags)

. : - Entity/Character references
Capable of expressing wide range of
o - Comments
applications CDATA delimit
- Including hierarchies, tables elimiters

Canb | Iverb - Processing Instructions
o e VBT TIRETEInose - XML/Text declarations

- Document type declarations

Basic XML Syntax Tag Format
Some prolog/header * Starting Tags can declare attributes
- Possibly describing/referring to type of XML - <TagName Attri="." Attr2='.">

- Note that attributes can use “ or

* Ending Tags match starting tag name, but with
a / preceding

Single root element
More elements forming a tree

- Elements fully “nest” inside each other - </TagName>

- Can have any number of children elements * Character data (and maybe other elements) in
Elements begin with a start tag, end with an end between start/end tags
tag * Empty element:

- <Elem>Stuff in element</Elem> - <Elem/>

- Equivalent to <Elem></Elem>

Entity/Character References Character References

* Note: Some character patterns are “reserved” * Character References are specialized
<> & * Use the form &#...; where the ... is a
° An entity reference is a name given to a reference to a character in an 1SO
character or set of characters standard
- Used for any other things to be repeated _ &: isan &
* General entity form: &whatever; !
- Used for the “reserved” chacters
° < <, > >, & &, " “ '
Comments CDATA sections
* Begin with <! - - * Used to note a section that would
* End with - -> otherwise be viewed as markup data
* Everything in between is ignored © <I[CDATA[.. 1]>

<l-- This is a comment --> <![CDATA[This <a>isnotbad]]>

Processing Instructions

* Allow documents to contain instructions
for applications reading them
- “Outside” the main document

* <? Target .. ?>
* Target is the target application name
- Any other instructions follow

<? MyReader -03 -f input.dat ?>

XML Semantics

* Semantics must be declared to determine what
Is valid syntax

- Tags allowed and their attributes, entities
- Does not say how it is processed
* Can be located in XML document itself

* Can be contained in separate Document Type
Declaration (DTD)

* Newer XML Schema definitions, which capture
semantics in an XML-like document

- But drawbacks, including difficulty to use, not
as universally implemented, large size, etc.

XML/Text Declarations

Documents should start with declaration
of XML type used, in a prolog:
- <?xml version=“1.0" ?>

Other documents “included” should also
have such a prolog, as the first line

Document Type Declaration

Defines constraints on the structure of the XML
Comes before first element

Either defines or points to external definition of
Document Type Definition (DTD)

External: <!DOCTYPE Name SYSTEM url>
Internal: <!DOCTYPE Name [..]>

The DTD can be standalone (no further external
references) or not

Element Declarations

* Define elements and allowed content (character
data, subelements, attributes, etc.)

°* <IELEMENT Name Content>

- Name is the unique name

- Content describes that type of element
* Options for Content:

- EMPTY — nothing allowed in the element

- ANY — no restrictions

- Children elements only

- Mixed character and children elements

Example of Child elements

<!Element book (
title,
coverpage,
tableofcontents?,
editionnote*,
preface?,
(chapternumber, chaptertitle, chaptertext)+,
index?

)>

Element Declarations: Child

element content

* When an element has (only) child
elements within it
* Specify using:
- Parentheses () for grouping
- The , for sequencing
- The | for “choice of”

- The + (one or more), * (zero or more), or
? (zero or one) modifiers.
* If no modifier, means “exactly once”

Element Declarations: Mixed
element content
* When an element can contain both

character and child elements

* The character text is denoted as a kind of
special element name: #PCDATA

<!ELEMENT story (#PCDATA|a|b|c)*>

Attribute Declarations

* Define allowed attribute names, their
types, and default values
* <IATTLIST ElementName Attribute*>
- ElementName is the name of the element
those attributes belong to

- Repeat attribute definition as many times as
needed

Attribute Declaration: Defaults

* Specify a default value

- Also specify whether attribute is needed in
the element

* #REQUIRED

- This attribute must be specified each time (no
default)

* #IMPLIED
- No default is specified
* Otherwise, use the default value given

- Precede by #FIXED if it must always take
that default

Attribute Declaration: Types

* Name Type DefaultValue
* Name is the attribute name
* Type:
- CDATA : string
- Enumerated: specified via a comma-
separated list in parentheses

- Tokenized: a limited form, specified by some
other rule defined in the DTD

- Several variations

Attribute Declaration Example

<!ATTLIST Book
title CDATA #REQUIRED
author CDATA “anonymous”
publisher CDATA #IMPLIED
category (fiction,nonfiction) “fiction”
language CDATA #FIXED ‘English’

Entity Declarations

* Entity References should be declared
* Internal Entity:

- <IENTITY Name ReplacementText >
<!ENTITY CR “Copyright 2008">

&CR;

* External Entity:
- <IENTITY Name SYSTEM url >

<!ENTITY BP SYSTEM “http://this.com/BP.xml"”>
&BP;

® There are also other variations on external
entities

Conditionals (in the DTD)

* Used in the DTD to apply different rules
* <![Condition[..]]>

- If Condition is INCLUDE then keep

- If Condition is IGNORE then skip

* Combine with parameter entities:
<!ENTITY % addborder ‘INCLUDE’>

<![%addborder; [
.. (stuff to draw border) ..

11>

Parameter Entities

* Like general entities, but refer to entities
to be used in the Document Type
Declaration

* Use a % instead of an &

<!ENTITY % newdef SYSTEM
“http://this.com/newdef-xml.entities”>

%newdef ;

XML Namespaces
* Different XML definitions could define the
same element name.

* If we want to use both, could have
conflict.

* Can distinguish using namespaces.
<a:book>..</a:book>
<b:book>..</b:book>

Defining XML Namespaces

* xmins attribute in definition of element
xmlns:prefixname="URL”"

<a:book
xmlns:a=http://this.com/adef>

* Can be defined in first use of element or
in XML root element.

* Can define a “default”
- No prefix needed, leave off : also

Summary/More Information

XML has become a standard way of
transferring information, especially over
the internet

Provides flexibility to represent a wide
range of data.

Many texts/online tutorials about XML
W3C “official” pages:

See in particular the XML 1.0 specs (more
than the 1.1 specs)

