
Collaborative Code Construction:
Code Reviews and Pair

Programming
CPSC 315 – Programming Studio

Fall 2011

Collaborative Construction

 Working on code development in close
cooperation with others

 Idea
− Developers don’t notice their own errors

very easily
− Others won’t have the same blind spots
− Thus, errors caught more easily by other

people
 Takes place during construction

process

Benefits to Collaborative
Construction

 Can be much more effective at finding errors
than testing alone

− 35% errors found through testing through low-
volume Beta level

− 55-60% errors found by design/code inspection
 Finds errors earlier in process

− Reduces time and cost of fixing them
 Provides mentoring opportunity

− Junior programmers learn from more senior
programmers

More Benefits

 Creates collaborative ownership
− No single “owner” of code
− People can leave team more easily, since

others have seen code
− Wider pool of people to draw from when

fixing later errors in code

Some Types of Collaborative
Construction

 Formal inspections
 Walkthroughs
 Code reading
 Pair programming

Code Reviews
 Method shown to be extremely effective in

finding errors
− ratio of time spent in review vs. later testing and

error correction ranges from 1:20 to 1:100
− Reduced defect correction from 40% of budget to

20%
− Maintenance costs of inspected code is 10% of

non-inspected code
− Changes done with review: 95% correct vs. 20%

without
− Reviews cut errors by anywhere from 20% to

80%
− Several others (examples from Code Complete)

Reviews vs. Testing

 Finds different types of problems than testing
− Unclear error messages
− Bad commenting
− Hard-coded variable names
− Repeated code patterns

 Only high-volume beta testing (and
prototyping) find more errors than formal
inspections

 Inspections typically take 10-15% of budget,
but usually reduce overall project cost

Formal Inspection
Characteristics

 Focus on detection, not correction
 Reviewers prepare ahead of time and arrive

with a list of what they’ve discovered
− Don’t meet unless everyone is prepared

 Distinct roles assigned to participants
− Hold to these roles during review

 Data is collected and fed into future reviews
− Checklists focus reviewers’ attention on common

past problems

Roles during Inspection

 Moderator
 Author
 Reviewer(s)
 Scribe
 Management

 3 people min
 ~6 people

max

Roles during Inspection

• Moderator
 Author
 Reviewer(s)
 Scribe
 Management

 3 people min
 ~6 people

max

• Keeps review moving
– Not too fast or slow

 Technically competent
 Handles all meeting

details
 distributing design/code
 distributing checklist
 Setting up room
 Report and followup

Roles during Inspection

 Moderator
• Author
 Reviewer(s)
 Scribe
 Management

 3 people min
 ~6 people

max

Plays minor role
 Design/Code should speak

for itself
Should explain parts that
aren’t clear

 But this alone can be a
problem

 Explain why things that
seem to be errors aren’t

Might present overview

Roles during Inspection

 Moderator
 Author
• Reviewer(s)
 Scribe
 Management

 3 people min
 ~6 people

max

• Interest in code but not
author

• Find errors during
preparation

• Find more errors during
meeting

Roles during Inspection

 Moderator
 Author
 Reviewer(s)
• Scribe
 Management

 3 people min
 ~6 people

max

• Records errors found
and action assigned or
planned

• Should not be moderator
or author

Roles during Inspection

 Moderator
 Author
 Reviewer(s)
 Scribe
• Management

 3 people min
 ~6 people

max

 Usually should not be
involved

 Changes from technical to
political meeting

Might need to see results
of meeting

Stages of Inspection –
Planning

 Author gives code/design to moderator
 Moderator then:

− chooses reviewers
− ensures code is appropriate for review

 e.g. line numbers printed

− distributes code and checklist
− sets meeting time

Stages of Inspection –
Overview

 If reviewers aren’t familiar with code at
all, can have overview

 Author gives a brief description of
technical requirements for code

 Separate from review meeting
 Can have negative consequences

− Groupthink
− Minimize points that should be more

important

Stages of Inspection –
Preparation

 Reviewers work alone to scrutinize for errors
− Checklist can guide examination

 Depending on code, review rate varies
− 125 to 500 lines per hour

 Reviewers can have varied “roles”
− be assigned “perspective”

 e.g. evaluate from user’s view, or from designer’s view
− evaluate different scenarios

 e.g. describe what code does, or whether requirement
is met

− read code/design in certain order/way
 e.g. top-down, or bottom-up

Stages of Inspection –
 Inspection Meeting

 A reviewer chosen to paraphrase design or read
code

− Explain all logic choices in program
 Moderator keeps things moving/focused
 Scribe records errors when found

− Record type and severity
 Don’t discuss solutions!

− Only focus is on identifying problems
− Sometimes don’t even discuss if it actually is an error – if it

seems like one, it is one
 No more than 1 per day, about a 2 hour limit

Stages of Inspection –
“Third Hour” meeting

 Depending on interest/stake of
reviewers, possibly hold a separate
followup meeting

− Immediately after inspection meeting
 Focus here is to discuss possible

solutions

Stages of Inspection –
Inspection Report

 Moderator produces report shortly after
meeting

− List of defects, types, and severity
 Use this report to update checklist to be used

in future inspections
− List main types of errors commonly found
− No more than 1 page total length

 Collect data on time spent and number of
errors

− Helps evaluate how well things work, justify effort

Stages of Inspection –
Rework

 Moderator assigns defects to someone
to repair

− Usually the author

Stages of Inspection –
Follow-Up

 Moderator verifies that work assigned
was carried out.

 Depending on number and severity of
errors, could take different forms:

− Just check with author that they were fixed
− Have reviewers check over the fixes
− Start cycle over again

Adjusting Inspections Over
Time

 Organizations will have characteristics
of code unique to them

− Density of code determines how fast
reviewers and inspection meeting can go
(application tends to be faster than system
code/design)

− Checklists highlight common problems
 Measure effect of any changes

− Evaluate whether they actually improved
process

Inspections and Egos
 Point is to improve code

− Not debate alternative implementations
− Not discuss who is wrong/right
− Moderator needs to control discussion

 Author needs to be able to take criticism of
code

− May have things mentioned that aren’t “really”
errors

− Don’t debate and defend work during review
 Reviewers need to realize the code is not

“theirs”
− Up to author (or someone else) to determine fix

Walkthroughs

 Alternative to formal code inspection
 Vague term, many interpretations

− Less formal than inspections, though
 Usually hosted and moderated by author
 Chance for senior and junior programmers to

mix
 Like inspection:

− Preparation required
− Focus on technical issues
− Goal is detection, not correction
− No management

Walkthrough Evaluation

 In best cases, can match formal code
inspections in quality

 In worst cases, can lower productivity,
eating more time than saved

 Can work well for large groups
 Can work well when bringing in

“outsiders”

Code Reading

 Alternative to inspections and
walkthroughs

 Author gives out code to two or more
reviewers

 They read independently
 Meeting held for everyone

− Reviewers present what they’ve found, but
don’t do a code walkthrough

Code Reading Evaluation

 Most errors tend to be found in
individual review

− Reduces effort and overhead of managing
group dynamics at inspection meeting

− Maximizes productive effort per person –
time not wasted in meetings where others
are speaking

 Works well for geographically
distributed reviewers

Pair Programming

 Basic idea: One person codes with another
looking over the shoulder.

 Person at keyboard writes code
 Second person is active participant

− Watch for errors
− Think strategically about code

 What’s next?
 Is code meeting overall goal/design?
 How to test this code

Successful Pair Programming

 Standardize coding style
 Don’t force pairs for easy tasks
 Rotate pairs and work assignments

frequently
 Use “good” matches

− Avoid personality conflicts
− Avoid major differences in speed/experience

 Set up good work environment
 At least one pair member should be

experienced

Evaluating Pair Programming

 Seems to achieve quality level similar
to formal inspection

 Tends to decrease development time
− Code written faster, fewer errors

 Tends to be higher quality code
− Holds up better during crunch time – fewer

shortcuts taken that come back to haunt
 All the traditional collaborative benefits

