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Thorpe and Fabre-Thorpe (2001)

e Due to neural conduction delay (couple of 100 ms), we cannot
even seem to catch up with the present.

e At best, we will be predicting the present, based on the past.
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Origin of Goal-Directed Behavior:

Recasting the Question

What is a goal?

— It is something in the future.

— To form a goal, one needs to see into the future.
— That is, prediction is necessary.

How does prediction arise in the nervous system
and how does it affect behavior?

Flash Lag Effect: Evidence of

Prediction in the Brain?

Perceived
Flash-Lag Effect (Nijhawan 1994) suggests that the brain
may be performing extrapolation to compensate for delay.
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Demo: Flash Lag Effect

W/O Delay Compensation: No FLE
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Implications of FLE

e There may be mechanisms in the brain for delay

compensation through extrapolation.

e The brain may predict the present, based on the

past.

e Alternative hypotheses: differential latency (Whitney

and Murakami 1998), postdiction (Eagleman and

Sejnowski 2000), etc.
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Research Questions

e How can the nervous system compensate for

internal delay?

e Are there single-neuron-level mechanisms for that?

Approach

Integrate insights from:

1. Psychophysics: Flash-lag effect

2. Neurophysiology: Dynamic synapses
3. Computational theory: Extrapolation

And, potential link to neurology (autism and dyslexia).
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Potential Anhswers

Extrapolation can be used to compensate for delay:
e That can happen at a single-neuron level.

e Facilitatory neural dynamics may be the underlying
mechanism.

e FLE may be a side-effect of such a compensatory
process.
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Dynamic Synapses
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Fig. 2. Differential synaptic facilitation and depression via the
same axon innervating two different targets. (4) A light microscopic
psuedocolor image of three bioeytin-filled neurons. The pyramidal
neuron on the left innervated the pyramidal neuron on the right and
the hipolar internenron on the right. (B} Single trial responses (30 Hz)
o same AP train. Failure rate for first EPSP: interneurons, 24%;
pyramidal neuron, 09 (60 sweeps). Coelficient of variation (CV; asin
rel. 15) for [irst EPSP: interneuron, 1.12; pyramidal neuron, (0115, CV
for fth EPSP: interneuron, 0.32; pyramidal neuron, 0L68.

(Markram et al. 1998)
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Dynamic Synapses

The effect of synaptic transmission changes dynamically.

e Dynamic increase: Facilitating synapse.
e Dynamic decrease: Depressing synapse.

e Time scale: several hundred milliseconds from the
onset (Liaw and Berger 1999; Fortune and Rose
2001; Markram 2002)
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Target Experiment: Luminance FLE

Actual

Perceived

Sheth et al. (2000)
e Works in both directions: increasing or decreasing.

e A single neuron can model the phenomenon.

— Firing rate represents the perceived luminance.
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Alternative Role of Dynamic
Synapses

e Previous: memory (sensitization and
habituation) (Zucker 1989; Fisher et al. 1997).

e Previous: temporal information processing

(Fuhrmann et al. 2002; Markram et al. 1998; Fortune

and Rose 2001).

e Proposed: extrapolation (facilitating synapses).
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Available Resource (/?) and

Synaptic Efficacy (U)

neurotransmitter

axon terminal

e [7: Fraction of recovered neurotransmitters.
e [J: Probability of neurotransmitter release.

e Postsynaptic response is dependent on /2 and U.
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Model: Dynamic Synapse

e Synaptic efficacy U (Markram et al. 1998; Fuhrmann et al. 2002):

dU U
= + C(1—=U)8(t —ts), (1)
dt T#
where 7 ¢: time constant for the decay of U; C a constant
determining the increase in U due to spikes at t5; and 0(-) the

Dirac delta function.

o To model extrapolation in the decreasing direction:

°= (e 1) (i ) @

where I (n) is the inter-spike interval.
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Results
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Model: Membrane Potential

Postsynaptic current P(t):

P(t) = FEe ™, (3)
E = AU, (4)

Membrane potential V;,,, (¢):
__t __t
Vin(t) = Vi (t —1)e ™m + P(t)(1—e ™). (5)

Once V/,,, exceeds the spike threshold €, a spike is generated,

followed by an absolute refractory period of Tyefrac-
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Luminance FLE: Summary

FLE can be due to delay compensation mechanism.

Facilitating synapses may be the neural basis of

delay compensation.

Limitations:

— Cannot explain cross-neuronal facilitation such

as orientation FLE
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Target Experiment: Orientation FLE Model: A Ring of Orientation Cells
I S
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e Needed:

e Cannot model with single neuron.

Shift in firing rate distribution when FLE occurs.
— V1 orientation-tuned cells have narrow tuning.

e Need network of neurons, with directionally biased o . . .
— Directionally biased connection weights.

weights.
— Facilitating dynamics.
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Model: STDP and Facn Synapses Results: Learned Weights
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e Spike Timing Dependent Plasticity (Bi and Poo

Weight in the direction of rotation increases.
1998): Set up directionally biased weights.

Weight in the opposite direction of rotation

e Facilitating Synapses: Extrapolation across decreases.

connections.
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Results
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e Peak firing neuron shifts in the direction of rotation.
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Orientation FLE: Summary

For cross-neuronal facilitation, both

e STDP
e Facilitating synpases

are needed.
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Firing Rate (100 ms)

Results: STDP or Facil. Synapse

Alone
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e STDP or facilitating synapses alone was insufficient.
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Application: Pole Balancing
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Modified Pole-Balancing Problem Neuroevolution of Recurrent Neural

Network Controller

r/:: _
| 8,

e Fully recurrent neural network controller.

e 2D pole balancing problem.
e Trained through neuroevolution (ESP by Gomez and

e Delay introduced in input (position and pole angle). Miikkulainen 1998, 1999: Gomez 2003).
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ESP Activation Approach: Add Dynamics to Neuron
Activation

Alt)

e Neuron state is determined by instantaneous ‘
& X(t)
v Aa(t)

weighted sum of activity:

X;(t) = g( Z w;; X;(t)),

-2 t-1 t t-2 t-1
j E N i Time Time

Activation value
Activation value

e Facilitatory activity (left):

where ¢(-) is a nonlinear activation function, /V; the
A(t) = X(t) + (X(t) — At — 1)),

set of neurons sending activation to neuron 7, and
A(t): facilitated activation level at t; X (¢): instantaneous
activation; r: facilitation rate (0 < r < 1).

e Decaying activity (right): A(t) = A(t — 1)r + X (¢)(1 —r).

w;; the connection weight from neuron j to neuron

1.
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Encoding r Experiment

e ESP was modified to use the facilitating or decaying Compare task performance under three types of

dynamics. dynamics:

e The rate parameter  was encoded in the e Control: Basic ESP implementation.

chromosome so that it can evolve. e FAN: Facilitatory Activation Network.

o DAN: Decaying Activation Network.
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Results: Activation Pattern Results: Cart Trajectory
(a) DAN (b) Control (c) FAN
e Last 1000 steps in successful balancing trials.
(a) DAN (b) Cocxntrol (c) F;AN

e 1-step delay, from iteration 50 to 150.
o Last 1000 steps in successful balancing trials.

e FAN shows smoother, low-amplitude oscillation. o
e 1-step delay, from iteration 50 to 150.

o FAN shows a smooth trajectory with a much smaller footprint.
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Results: Success Rate
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Experiments

Different delay conditions were tested.

FAN showed best performance under all conditions
(t-test, p < 0.005, n = 250).
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Results: Effect of Increased Delay
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(a) Increased delay (b) Increased blank-out duration

e Performance under increased delay and input

blank-out period.

e In all conditions, FAN performed the best.
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Results: Speed of Learning
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Experiments

e Different delay conditions were tested (same as

above).

e FAN showed best performance under all conditions

(t-test, p < 0.0002, n = 250), except for the
0 .-delay case (p = 0.84, i.e., no difference).
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Blank-Out as External Delay

"1%;3@@__:

To Computer

Mehta and Schaal (2002)

e Input feed cut off for 40 ~ 500 ms while balancing a
virtual pole.

e Humans are good at dealing with input blank-out.

e FAM shows similar robu4%tness.



Analysis: Evolution of r

2 2
Sorted neuron index Sorted neuron index

(a) DAN: Initial state (b) DAN: Final state

Facilitation rate

2 2
Sorted neuron index Sorted neuron index

(c) FAN: Initial state (d) FAN: Final state

FAN: best neurons had high r

DAN: best neurons had low 7
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Discussion

Can predictive traces be found in cortical/cerebellar dynamics?
(cf. Harter; Kozma and Freeman; Principe; Werner; Voicu)

Role of prediction in decision making? (cf. Levine; Wunsch)
Nonlinear control with delay? (cf. Lewis)

Facilitating (afferent) and nonfacilitating (associative) synapses in
the olfactory system (cf. Gutierrez-Osuna)

Predicted future state (and goal) as a moving target to be
optimized against? (cf. Werbos)

Use of delay in simulated agents to facilitate the evolution of
predictive capabilities (cf. Miikkulainen)

Differential role of prediction in differentiation-oriented vs.

synthesis-oriented cultures (Perelovsky).
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Summary: Pole Balancing

e Facilitatory dynamics help alleviate debilitating

effects of delay in the input.

e Facilitatory dynamics can help in delay in external

environment as well (potential for real prediction?).

e Decaying dynamics make things worse.
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Future Directions
Autism:
® Problem in coherent motion detection (Milne et al. 2002).

® Problem with processing moderately rapid motion (Gepner et al.
2001; Gepner 2002).

Dyslexia:

e Difficulty with processing rapidly changing stimulus (Hari and
Renvall 2001)

Predictions:
e Autistics and dyslexics may not perceive FLE.

e Abnormal growth in brain size may have outgrown built-in delay
compensation mechanisms.
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Conclusions

e Facilitatory (extrapolatory) dynamics at a
single-neuron level can help compensate for neural

delay.

e Facilitatory synapses may be implementing such a

function: They are not just for memory!

e Such mechanisms may have evolved into predictive
mechanisms providing access to estimated future

states.
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e Not just for survival/reproduction, but for prediction, to support
motion (Llinas 2001).
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