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Origin of Goal-Directed Behavior:

Recasting the Question

• What is a goal?

– It is something in the future.

– To form a goal, one needs to see into the future.

– That is, prediction is necessary.

• How does prediction arise in the nervous system

and how does it affect behavior?
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Whence Prediction?

Thorpe and Fabre-Thorpe (2001)

• Due to neural conduction delay (couple of 100 ms), we cannot

even seem to catch up with the present.

• At best, we will be predicting the present, based on the past.
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Flash Lag Effect: Evidence of

Prediction in the Brain?

t=1 t=2 t=3 t=4

Perceived

• Flash-Lag Effect (Nijhawan 1994) suggests that the brain

may be performing extrapolation to compensate for delay.
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Demo: Flash Lag Effect
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Implications of FLE

• There may be mechanisms in the brain for delay

compensation through extrapolation.

• The brain may predict the present, based on the

past.

• Alternative hypotheses: differential latency (Whitney

and Murakami 1998), postdiction (Eagleman and

Sejnowski 2000), etc.
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W/O Delay Compensation: No FLE
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With Delay Compensation: FLE
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Research Questions

• How can the nervous system compensate for

internal delay?

• Are there single-neuron-level mechanisms for that?
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Potential Answers

Extrapolation can be used to compensate for delay:

• That can happen at a single-neuron level.

• Facilitatory neural dynamics may be the underlying

mechanism.

• FLE may be a side-effect of such a compensatory

process.
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Approach

Integrate insights from:

1. Psychophysics: Flash-lag effect

2. Neurophysiology: Dynamic synapses

3. Computational theory: Extrapolation

And, potential link to neurology (autism and dyslexia).
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Dynamic Synapses

(Markram et al. 1998)
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Dynamic Synapses

The effect of synaptic transmission changes dynamically.

• Dynamic increase: Facilitating synapse.

• Dynamic decrease: Depressing synapse.

• Time scale: several hundred milliseconds from the

onset (Liaw and Berger 1999; Fortune and Rose

2001; Markram 2002)
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Alternative Role of Dynamic

Synapses

• Previous: memory (sensitization and

habituation) (Zucker 1989; Fisher et al. 1997).

• Previous: temporal information processing

(Fuhrmann et al. 2002; Markram et al. 1998; Fortune

and Rose 2001).

• Proposed: extrapolation (facilitating synapses).
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Target Experiment: Luminance FLE

Actual

Perceived

time

flash!

Sheth et al. (2000)

• Works in both directions: increasing or decreasing.

• A single neuron can model the phenomenon.

– Firing rate represents the perceived luminance.
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Available Resource (R) and

Synaptic Efficacy (U )
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• R: Fraction of recovered neurotransmitters.

• U : Probability of neurotransmitter release.

• Postsynaptic response is dependent on R and U .
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Model: Dynamic Synapse

• Synaptic efficacy U (Markram et al. 1998; Fuhrmann et al. 2002):

dU

dt
= − U

τf
+ C(1 − U)δ(t − ts), (1)

where τf : time constant for the decay of U ; C a constant

determining the increase in U due to spikes at ts; and δ(·) the

Dirac delta function.

• To model extrapolation in the decreasing direction:

C =

(
I(n − 1) − I(n)

|I(n − 1) − I(n)|
)(

I(n − 1)

I(n)

)
r, (2)

where I(n) is the inter-spike interval.
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Model: Membrane Potential

• Postsynaptic current P (t):

P (t) = Ee
− t

τp , (3)

E = AU, (4)

• Membrane potential Vm(t):

Vm(t) = Vm(t − 1)e
− t

τm + P (t)(1 − e
− t

τm ). (5)

• Once Vm exceeds the spike threshold θ, a spike is generated,

followed by an absolute refractory period of τrefrac.
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Results
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Luminance FLE: Summary

• FLE can be due to delay compensation mechanism.

• Facilitating synapses may be the neural basis of

delay compensation.

• Limitations:

– Cannot explain cross-neuronal facilitation such

as orientation FLE
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Target Experiment: Orientation FLE

(a) Physical (b) Perceived

• Cannot model with single neuron.

– V1 orientation-tuned cells have narrow tuning.

• Need network of neurons, with directionally biased

weights.
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Model: A Ring of Orientation Cells

Lateral
connections

Input

Orientation−tuned cells

FLE

No FLE

Physical Input

. . . . . .

• Shift in firing rate distribution when FLE occurs.

• Needed:

– Directionally biased connection weights.

– Facilitating dynamics.
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Model: STDP and Facil. Synapses
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• Spike Timing Dependent Plasticity (Bi and Poo

1998): Set up directionally biased weights.

• Facilitating Synapses: Extrapolation across

connections.
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Results: Learned Weights
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• Weight in the direction of rotation increases.

• Weight in the opposite direction of rotation

decreases.
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Results
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• Peak firing neuron shifts in the direction of rotation.
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Results: STDP or Facil. Synapse

Alone
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• STDP or facilitating synapses alone was insufficient.
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Orientation FLE: Summary

For cross-neuronal facilitation, both

• STDP

• Facilitating synpases

are needed.
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Application: Pole Balancing
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Modified Pole-Balancing Problem

θz

θx

z

y

x

• 2D pole balancing problem.

• Delay introduced in input (position and pole angle).
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Neuroevolution of Recurrent Neural

Network Controller
fx fy

cx cy
�

z
�

x

• Fully recurrent neural network controller.

• Trained through neuroevolution (ESP by Gomez and

Miikkulainen 1998, 1999; Gomez 2003).
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ESP Activation

• Neuron state is determined by instantaneous

weighted sum of activity:

Xi(t) = g(
∑
j∈Ni

wijXj(t)),

where g(·) is a nonlinear activation function, Ni the

set of neurons sending activation to neuron i, and

wij the connection weight from neuron j to neuron

i.
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Approach: Add Dynamics to Neuron

Activation
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• Facilitatory activity (left):

A(t) = X(t) + (X(t) − A(t − 1))r,

A(t): facilitated activation level at t; X(t): instantaneous

activation; r: facilitation rate (0 ≤ r ≤ 1).

• Decaying activity (right): A(t) = A(t − 1)r + X(t)(1 − r).
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Encoding r

• ESP was modified to use the facilitating or decaying

dynamics.

• The rate parameter r was encoded in the

chromosome so that it can evolve.
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Experiment

Compare task performance under three types of

dynamics:

• Control: Basic ESP implementation.

• FAN: Facilitatory Activation Network.

• DAN: Decaying Activation Network.
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Results: Activation Pattern
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(a) DAN (b) Control (c) FAN

• Last 1000 steps in successful balancing trials.

• 1-step delay, from iteration 50 to 150.

• FAN shows smoother, low-amplitude oscillation.
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Results: Cart Trajectory
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• Last 1000 steps in successful balancing trials.

• 1-step delay, from iteration 50 to 150.

• FAN shows a smooth trajectory with a much smaller footprint.
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Results: Success Rate

�
��� �

��� �
��� �

��� �
��� �

��� �
��� 	

��� 

��� �

���������� ��������������� ��� � ����!�� �"����� ��� � ����!�� �"����� �#�

Experiments

S
uc

ce
ss

 r
at

e
$&%�'
(&)�*,+ -.)�/
0�%�'

Delay in θz Delay in θxNo delay Delay

• Different delay conditions were tested.

• FAN showed best performance under all conditions

(t-test, p < 0.005, n = 250).
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Results: Speed of Learning
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• Different delay conditions were tested (same as

above).

• FAN showed best performance under all conditions

(t-test, p < 0.0002, n = 250), except for the

θz-delay case (p = 0.84, i.e., no difference).
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Results: Effect of Increased Delay
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(a) Increased delay (b) Increased blank-out duration

• Performance under increased delay and input

blank-out period.

• In all conditions, FAN performed the best.
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Blank-Out as External Delay

Mehta and Schaal (2002)

• Input feed cut off for 40 ∼ 500 ms while balancing a

virtual pole.

• Humans are good at dealing with input blank-out.

• FAM shows similar robustness.
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Analysis: Evolution of r
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(c) FAN: Initial state (d) FAN: Final state

• FAN: best neurons had high r

• DAN: best neurons had low r
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Summary: Pole Balancing

• Facilitatory dynamics help alleviate debilitating

effects of delay in the input.

• Facilitatory dynamics can help in delay in external

environment as well (potential for real prediction?).

• Decaying dynamics make things worse.
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Discussion
• Can predictive traces be found in cortical/cerebellar dynamics?

(cf. Harter; Kozma and Freeman; Principe; Werner; Voicu)

• Role of prediction in decision making? (cf. Levine; Wunsch)

• Nonlinear control with delay? (cf. Lewis)

• Facilitating (afferent) and nonfacilitating (associative) synapses in

the olfactory system (cf. Gutierrez-Osuna)

• Predicted future state (and goal) as a moving target to be

optimized against? (cf. Werbos)

• Use of delay in simulated agents to facilitate the evolution of

predictive capabilities (cf. Miikkulainen)

• Differential role of prediction in differentiation-oriented vs.

synthesis-oriented cultures (Perelovsky).
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Future Directions
Autism:

• Problem in coherent motion detection (Milne et al. 2002).

• Problem with processing moderately rapid motion (Gepner et al.

2001; Gepner 2002).

Dyslexia:

• Difficulty with processing rapidly changing stimulus (Hari and

Renvall 2001)

Predictions:

• Autistics and dyslexics may not perceive FLE.

• Abnormal growth in brain size may have outgrown built-in delay

compensation mechanisms.
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Conclusions

• Facilitatory (extrapolatory) dynamics at a

single-neuron level can help compensate for neural

delay.

• Facilitatory synapses may be implementing such a

function: They are not just for memory!

• Such mechanisms may have evolved into predictive

mechanisms providing access to estimated future

states.
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Question: Why Do We Have a Brain?

Tree

(no Brain)

Tunicate

Free-floating

(Has brain)

Tunicate

Settled

(Brain digested)

• Not just for survival/reproduction, but for prediction, to support

motion (Llinás 2001).

Sources: http://homepages.inf.ed.ac.uk/jbednar/ and http://bill.srnr.arizona.edu/classes/182/Lecture-9.htm46
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