Classes of Network Connectivity Introduction

and Dynamics e Complex systems with patterns of temporal correlation: Arise
from functional interactions within a structured network.

. e The brain is an example.
by Sporns and Tononi (2002) N IS an examp
e Activation and coactivation patterns (or functional connectivity)
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underlies perceptual and cognitive functions.

e Tools to investigate structure-function relation.
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Connectivity Computational Methods for Analysis

e Anatomical o Graph theory: vertices and edges, connection matrix, graph

space, path, path length, cluster index, etc.
— Area-to-area connectivity known.
. - e Functional dynamics: sigmoidal activation units (with noise),
— Some detailed connectivity known. ) . . o ) )
covariance matrix derived from connectivity matrix and noise.

e Functional — Entropy: overall statistical independence

— Temporal correlation or deviation from statistical H(X) 05, 1n((27re)”|COV(X)|).

independence.
— Segregation (functional units) and integration needed. — Integration: deviation for statistical independence
— Covariance matrix (second-order effects) can express these I(X) = § H(x;) — H(X).
aspects. P
— "Complexity” measure. — Complexity: degree of segregation and integration (next page)



Complexity

e Complexity: size n and connectivity k
Cn(X) = Y (k/mI(X) = (I(X]))
= ) (MIX[X - X))

k

C(X) = H(X)- ) H(@:X - x)

= (n—DI(X) - n{I(X —xi))

e (C'(X) high if single elements are highly informative about the

system while not being overly alike.
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Networks Optimized for Different Criteria
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® A(top): Connection matrix (static): unidirectional (gray),

bidirectional (white)

o A(bottom): Covarianve matrix (dynamic)

e B: /(X)) vs. C(X) in networks optimized for three quantities.

Graph Selection

e Randomly generate and simulate graphs.
e Try maximizing different measures.

e Perform various measures on connectivity and dynamic

properties.

Covariance Matrix Analysis: Dynamics
C e on/me ;

=32, k=160 n=64, k=640

D n=32, k=320

=64, k=1280
™,

mmmmm

e C: Analytic (linear) vs. simulation (nonlinear).
e D: Varying network size m and connectivity k.

e E: Redistributing synaptic weight rather than connections
themselves.



Eigenvalue Spectra for Correlation Matrix
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® For complex networks, two to three terms dominate.

Distance Matrices: Structural Feature

random

Distance Matrices
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Path length in different networks.

Entropy: long distance.

Integration: short distance between core, long distance to oultliers.

Complexity: short distance within cluster, long distance across

cluster.
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Multidimensional Scaling for Measuring Distance

random entropy integration complexity

e Bidirectional connections (red); unidirectional connections (green)
e Some have spatial ordering, while some don’t.

e Complex networks show clustering and long-range
interconenctions: functionally segregated subsets emerge
(reduced dimensionality).
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Characteristic Path Length: Structural Feature
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o CPL: global average of the distance matrix.

e Cluster index: number of connections among immediate
neighbors / all possible connections among immediate neighbors.

e High complexity: High cluster index and low path length.
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Wire-Length Minimization
2-D Minimized Wiring

complexity

e Map graph onto 2D space: Vertices are given (, y) locations.

e How to map to minimize wiring length?: Run optimization

program.

o Complex networks give short total wire length compared to
random networks.
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Organization, development, and

function of complex brain networks

by Sporns et al. (2004)

CPSC 644, Spring 2007
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Conclusion

It is important to understand functional connectivity based on

anatomical connectivity.

Compilexity is an interesting measure of simultaneous segregation
and integration: Not too ordered, not too random.

Cortical networks: found to be complex.

Role of complexity in evolution: wiring length reduction may be a

side effect of maximizing complexity.
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Complex Networks: Small World vs. Scale-Free

(a) L=1.68{0.01) (b) L=1.79 (0.04) (¢) L=1.73 (0.06)
€=0.35 (0.03) €=0.52 (0.04) €=0.52 (0.05)

Random

Small-world: dense local connetions, occasional long-distance
connections. Often found in nature.

Scale-free: degree distribution follows a power-law. Different
degree values exist at every scale (scale-free). Often found in

artifacts.

L: characteristic path length; C: clustering coefficient
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Brain Connectivity Characterization of Networks

@
o Anatomical connectivity: actual physical connections -

Lattice

0.6 -
e Functional connectivity: activation/coactivation patterns.

Macaque visual cortex

e Effective connectivity: causal effects of one element over another.

Not model-free: requires causal model with parameters. Use

Clustering coefficiert

perturbation to infer connectivity. . i

Random
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® Area-wise connectivity in Macaque visual cortex: High cluster
coefficient, low path length.
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Cat Corticocortical Connectivity Functional Connectivity in Human fMRI Data
(b)
Visual Spg ) Auditory

; ® Areas treated as connected when correlation is above a certain
O 5m
| > threshold.

‘Frontolimbic' Somaltosensory-motor

e Closer nodes represent higher inter-linked areas. ® Degree: yellow=1, green=2, red=3, blue=4, other > 4.

e Clusters (separated by bars) correspond to visual, auditory,
somatosensory-motor, and frontolimbic cortices.
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Degree Distribution in Human fMRI Data
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e Power-law is observed regardless of the correlation threshold: It
seems to be scale-free?

e Random graphs show a unimodal degree distribution.
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Questions for Future Research

Box 4. Questions for future research

« What are the best experimental approaches to generate large and
comprehensive connectional datasets for neural systems, especially
for the human brain?

* What is the time scale for changes in functional and effective
connectivity that underlie perceptual and cognitive processes?

« Are all cognitive processes carried out in distributed networks? Are
some coghnitive processes carried out in more restricted networks,
whereas others recruit larger subsets?

« Does small-world connectivity reflect developmental and evol-
utionary processes designed to conserve or minimize physical
wiring, or does it confer other unique advantages for information
processing?

« What is the relationship between criticality, complexity and
information transfer?

* Is the brain optimized for robustness towards lesions, or is such
robustness the by-product of an efficient processing architecture?

* What is the role of hubs within scale-free functional brain
networks?

* How can scale-free functional networks arise from the structural
organization of cortical networks?
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Growth: Local Rules vs. Global Design
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Structure largely determined by growth and development.

Growth mechanims governed by constraints gives rise to different
kinds of networks.

Role of experience-dependent plasticity?

Local growth rules: preferential attachment vs.
distance-modulated spatial growth mechanism.

Global network design
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Conclusion

Systematic and global regularities in brain networks.
Segregation and integration.
Small-world attributes: Why? — for signal transformation?

Relation to cognitive functions?
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