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Need for Accurate Morphological Reconstruction

• Dendrite diameter of 0.8 µm, estimated to be 0.5 µm will result in

60% error in surface area and 156% for cross-sectional area.

• Thus, small errors like that can result in huge differences in

physiological simulations.

• Many sources of error:

– Ignoring dendritic spines

– Shrinkage during histological processing

– Optical limit
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Techniques

• Stain during intracellular recording: Inject biocytin/neurobiotin

followed by coupling to avidin-HRP. Dark stain results. Motorized

stage/microscope used for reconstruction.

• Fluorescent dyes can also be used, but hard to reconstruct.
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Filling and Staining Neurons in Slices

• Slice preparation

• Injection of biocytin

• Fixation of slices

• Histological processing of slices

• Mounting and clearing of thick slices
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Uniformity Issues

• Quality of staining is not uniform: Some cells are fine, some are

not.
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Problems with Slice Preparation

• Distortion and shrinkage.

• Curled up parts.
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Other Methods for Neuronal Morphology Acquisition

• Photoconversion of fluorescent dyes (selective tagging possible)

• Golgi method: dark staining of full neurons, but only a small

number of neurons are stained. However, large number of

samples can be obtained, compared to injection methods.

• Filling individual neurons in fixed tissue

• Electron-microscopy: dendrites and spines can be measured with

high accuracy.

• High-voltage EM tomography: 3D imaging.

• Confocal microscopy
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Tracing Neurons under LM

• Resolution: 0.6× λ/NA. For λ = 500 nm and 1.0 numerical aperture

(NA), resolution limit is 0.3 µm.

• Moving stage plus manual reconstruction software is used to reconstruct

neurons (tracing one neuron takes about 30 minutes to several days).

• Individual variations in tracing results
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Variation in Reconstruction

• Individual differences are apparent.
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Overview

• Model of dendritic geometry: stochastic generation by elongation

and branching

• Model for the development of interneuronal connectivity:

competition for neurotrophic factors.
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Modeling Dendritic Geometry

• Morphology, development of morphology, and relation to neuronal

connectivity are of interest.

• What are the “fundamental rules” or minimal parsimonious

descriptions of architecture, development, and function?

• Reconstruction model

• Growth model
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Reconstruction Model

• Measure parameters from observed data.

• Random sampling on the estimated distribution to generate

synthetic neurons having the same distribution.

• Several different approaches exist (see the text).
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Growth Model

• Aim is to reveal rules of neuronal growth in relation to the

geometric properties of the trees emerging from these rules.

• Dynamic behavior of growth cones are considered.

• Elongation and branching.

• Topological vs. metric growth models.

• Growth over time is modeled, so time-dependent aspect can be

investigated.
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Ingredients of Growth Models

• Choices of segments at which branching occur

• Time pattern of branching events

• Elongation of segments
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Geometry of Dendritic Trees

• Number of terminal tips (degree) or branch points

• Lengths and diameters of the segments

• Connectivity pattern of segments

• Terminal vs. intermediate segments

• Path length, Centrifugal order

• Asymmetry index

At(α
n
) =

1

n− 1

n−1∑
j−1

Ap(rj , sj)
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Dendritic Growth Model: Assumptions

• Branching at the tip of terminal segments

• Elongation only at terminal segments

• Branching parameters can be estimated from observed terminal

segment number distribution.
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Dendritic Growth Model

• Branching process: variation in the number of segments and the variation

in topological tree types depends on

– Number of terminal segments (or tips)

– Expected number of branching events

– Dependence of branching on number of tips

• Elongation process: variation in segment lengths

– Random elongation predefined distribution

– Intermediate segment length distribution: can be monotomically

decreasing or have a modal shape

– Branching event not a point process in time, but proceeds during a

certain period of time during which a growth cone splits and the

daughter branches become stabilized

• Time

• Segment diameter: de
p = de

1 + de
2 with exponent e.
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Dendritic Growth Model Parameters
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Effects of Growth Parameter S

• Each plot shows multiple plots for trees with different order.

• S: can be estimated from the value of the topological asymmetry

index, or from the mean centrifugal order of the tree.
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Effects of Branching Parameters B, E

Basic branching parameterB and Size-dependency of branchingE

can be estimated from:

• Mean number of terminal segments per dendrite

• Standard deviation of terminal segments per dendrite
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Estimation of Metric Parameters

Segment length offset α, Mean segment length l̄, Mean elongation

rate v̄, and standard deviation of segment length σ, at three different

stages:

• Initial

• Branching/elongation period

• Elongation period

Estimated obtained through optimization process.
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Estimation of Elongation Rate

• Terminal segments are longer than intermediate segments

• Decrease in terminal segment length with increasing centrifugal

order: This is affected by sustained elongation of segments and

their initial lengths, thus ratio between length of lowest and

highest segment can help estimate sustained elongation rate.
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Other Parameters

• Variation in sustained elongation rates: Estimated by the variation

in path lengths distribution.

• Diameter parameters: direct calculation
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Example Results: S1-Rat Cortical Layer 2/3

Pyramidal Cell
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Intermetidate and Terminal Segment Length

Distribution

• Model matches the data pretty well.
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Observed vs. Model
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Example Results: Guinea Pig Cerebellar Purkinje

Cell
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Intermetidate and Terminal Segment Length

Distribution

• Model matches the data pretty well.
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Observed vs. Model
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Generated Random Trees
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Competition for Neurotrophic Factor in Development

of Nerve Connections

• Proliferation followed by elimination

• Single-axon or multiple-axon innervation

• Neurotrophins are involved in such growth: NGF is an example

• Competition through normalization or threshold adaptation
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Neurotrophin Action at a Single Target

• Axonal competition at a single target

• Secretion of neurotrophin by the target

• Removal of neurotrophin: degradation, diffusion, binding (reversible)

• Number of neurotrophin receptors (NTR)C , Unoccupied NTRR, NT

concentrationL
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Axonal Growth

• Binding triggers arborization of axons and increase in the number of axon

terminals.

• Other effects include: increased size of axon terminals, upregulating NTR

density, etc.

• Number of unoccupied NTR inserted φ

• Growth function f(C) depends on number of bound NTRC .
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Results and Predictions

• Single innervation: resulting number of axons

• Multiple innervation: resulting number of axons

• Rate of neurotrophin release vs. number of axons

• Coexistence of single and multiple innervation
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