Spectral Histogram Model for Texton Spectral Histogram Overview

Modeling and Textu re Discrimination e Filter response distribution as a quantitative definition of texton
(texture element) pattern.
by Liu and Wang (2002) e Stochastic generation of images with similar spectral histogram
signature.

CPSC 644, Spring 2007

e Use of X2-distance for comparing spectral histograms.

e Texture segmentation using spectral histograms: comparison to

Presented by Yoonsuck Choe human psychophysics.
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Texture Perception Texture Synthesis
e Texture perception is an important component in early visual e Given probability distributions based on local correlation, use
perception. statistical sampler to generate (synthesize) individual textures.
o Texture discrimination is near effortless. e Local statistical methods not good for dealing with realistic
. textures containing large-scale features.
® Textons: basic elements that make up textures:

Elongated blobs define by color, orientation, etc. e Image pyramid approach can be used to deal with such an issue.

Line terminators

Line crossings

Local closure

Textons are hard to describe formally.



Spectral Histogram Examples of Spectral Histogram
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e Image window W
o Filters { () o =1,2,..., K}.
e Filter response W () = F(@) « W

® Response histogram H‘(;)

Filter response
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® Spectral histogram: response histograms of all filters
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Spectral Histgrams as Texton Patterns Texture Synthesis Algorithm
For a binary imput texture, compute HU(;{ . o=
l,....K.
Initialize Iy, as a binary white noise image and
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e Synthesize texture based on spectral histogram from observed Until S35 [ (i) — HG) (1) < e for o= 1,2,

image. Use of Gibbs sampler to reduce differences in SH. K
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Texture Synthesis Results Synthesis of Natural Textures
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Interim Summary Texture Discriminability in Humans
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®

e Humans respond differently to different texture combinations.

e Some stand out more than others.
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Texture Discriminability with Spectral Histograms

® Results are consistent with human psychophysics.

Texture Discriminability with Spectral Histograms
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e Solid line: spectral histogram

Dots, dashes: psychophysical data
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Texture Discriminability with Spectral Histograms

Table 1

Texture discrimination scores

Texture pair Texture discriminability

Human data Malik and Perona  Spectral

(Krose, 1986)  results (Malik & histogram

Perona, 1990) results

(+0) 100 407 0.135
(+1[D 88.1 225 0.036
(L +) 68.6 203 0.027
(L M) n.a. 165 0.023
(A —) 52.3 159 0.018
(+T 37.6 120 0.015
(+X) 30.3 104 0.014
(TL) 30.6 90 0.004
(L, Mp) n.d. 85 0.001
(R-mirror-R) n.a. 50 -0.01

e Results are consistent with human psychophysics.
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Asymmetry in Texture Discrimination
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o Asymmetry is found in texture discriminability even when the

(a)

constituent textures are the same.

(b)

e SH discriminability scores are: (a) 0.005 and (b) 0.018.
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Comparison to Other Texture Synthesis Methods
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e Original; Heeger and Bergen (1995); Spectral histogram
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Texture Boundary Detection

e Calculate texture gradient based on x2 distance in adjacent
regions.
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Discrimination Based on 2nd-order Moment

Frequency

Filter response
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e Texture made of response distributions of same mean but
different variance: SH can discriminate these.
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Discussion
e Filter selection
e Texture segregation
e Biological plausibility
— Filters: no problem
— Histograms: sketchy
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e What is a texture?
e Why did the visual system evolve to be sensitive to textures?
® See Oh and Choe (2006) for details.
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