Spectral Histogram Model for Texton Modeling and Texture Discrimination

by Liu and Wang (2002)

CPSC 644, Spring 2007

Presented by Yoonsuck Choe

Spectral Histogram Overview

- Filter response distribution as a quantitative definition of texton (texture element) pattern.
- Stochastic generation of images with similar spectral histogram signature.
- Use of χ^2 -distance for comparing spectral histograms.
- Texture segmentation using spectral histograms: comparison to human psychophysics.

2

Texture Perception

1

- Texture perception is an important component in early visual perception.
- Texture discrimination is near effortless.
- Textons: basic elements that make up textures:
 - Elongated blobs define by color, orientation, etc.
 - Line terminators
 - Line crossings
 - Local closure
- Textons are hard to describe formally.

Texture Synthesis

- Given probability distributions based on local correlation, use statistical sampler to generate (synthesize) individual textures.
- Local statistical methods not good for dealing with realistic textures containing large-scale features.
- Image pyramid approach can be used to deal with such an issue.

Spectral Histogram

- Image window W
- Filters $\{F^{(\alpha)}, \alpha = 1, 2, ..., K\}.$
- Filter response $\mathbf{W}^{(\alpha)} = F^{(\alpha)} * \mathbf{W}.$
- Response histogram $H_{\mathbf{W}}^{(\alpha)}$
- Spectral histogram: response histograms of all filters

$H_{\mathbf{W}} = \left(H_{\mathbf{W}}^{(1)}, H_{\mathbf{W}}^{(2)}, ..., H_{\mathbf{W}}^{(\alpha)}, ..., H_{\mathbf{W}}^{(K)}\right)$

• Difference measure: χ^2

$$\chi^{2}\left(H_{\mathbf{W}_{1}}, H_{\mathbf{W}_{2}}\right) = \frac{1}{K} \sum_{\alpha=1}^{K} \sum_{z} \frac{\left(H_{\mathbf{W}_{1}}^{(\alpha)}(z) - H_{\mathbf{W}_{1}}^{(\alpha)}(z)\right)^{2}}{H_{\mathbf{W}_{1}}^{(\alpha)}(z) + H_{\mathbf{W}_{1}}^{(\alpha)}(z)}$$

Examples of Spectral Histogram

Similar for similar (but not identical) textures, different for different textures.

6

Spectral Histgrams as Texton Patterns

5

• Synthesize texture based on spectral histogram from observed image. Use of Gibbs sampler to reduce differences in SH.

Texture Synthesis Algorithm

For a binary input texture, compute $H_{obs}^{(\alpha)}$, $\alpha = 1, \ldots, K$. Initialize \mathbf{I}_{syn} as a binary white noise image and $\lambda_i^{(\alpha)} \leftarrow 0$. Repeat For each pixel location \vec{v} in \mathbf{I}_{syn} , do $\mathbf{I}_{black} \leftarrow \mathbf{I}_{syn}$, $\mathbf{I}_{black}(\vec{v}) \leftarrow 0$, $\mathbf{I}_{white} \leftarrow \mathbf{I}_{syn}$, $\mathbf{I}_{white}(\vec{v}) \leftarrow 1$. Compute $H_{\mathbf{I}_{black}}^{(\alpha)}$ and $H_{\mathbf{I}_{white}}^{(\alpha)}$, $\alpha = 1, \ldots, K$. $E_{black} \leftarrow \sum_{\alpha=1}^{K} \sum_{i=1}^{L^{(\alpha)}} \lambda_i^{(\alpha)} \times H_{\mathbf{I}_{black}}^{(\alpha)}(i)$, $E_{white} \leftarrow \sum_{\alpha=1}^{K} \sum_{j=1}^{L^{(\alpha)}} \lambda_i^{(\alpha)} \times H_{\mathbf{I}_{white}}^{(\alpha)}(i)$ $P_{black} \leftarrow \exp(-E_{black})/(\exp(-E_{black}) + \exp(-E_{white}))$. $\mathbf{I}_{syn}(\vec{v}) \leftarrow 0$ with probability P_{black} and $\mathbf{I}_{syn}(\vec{v}) \leftarrow 1$ with $1 - P_{black}$. $\lambda_i^{(\alpha)} \leftarrow \lambda_i^{(\alpha)} + \tau(H_{\mathbf{I}_{syn}}^{(\alpha)}(i) - H_{obs}^{(\alpha)}(i))$. Until $\sum_{i=1}^{L^{(\alpha)}} |H_{isyn}^{(\alpha)}(i) - H_{obs}^{(\alpha)}(i)| \leq \epsilon$ for $\alpha = 1, 2, \ldots, K$.

Texture Synthesis Results

Synthesis of Natural Textures

• Similar approach works for natural textures.

10

Interim Summary

 Spectral histograms "capture a level of image description that is sensitive to certain types of spatial information such as orientation, scale, and density, while oblivious of geometrical properties."

Texture Discriminability in Humans

- Humans respond differently to different texture combinations.
- Some stand out more than others.

Texture Discriminability with Spectral Histograms

• Results are consistent with human psychophysics.

Texture Discriminability with Spectral Histograms

13

- Dots, dashes: psychophysical data
- Solid line: spectral histogram

Texture Discriminability with Spectral Histograms

Table 1

Texture discrimination scores

Texture pair	Texture discriminability		
	Human data (Kröse, 1986)	Malik and Perona results (Malik & Perona, 1990)	Spectral histogram results
(+ O)	100	407	0.135
(+ [])	88.1	225	0.036
(L +)	68.6	203	0.027
(L M)	n.a.	165	0.023
$(\Delta ightarrow)$	52.3	159	0.018
(+ T)	37.6	120	0.015
(+ X)	30.3	104	0.014
(T L)	30.6	90	0.004
$\left(L_L,M_L\right)$	n.a.	85	0.001
(R-mirror-R)	n.a.	50	-0.01

• Results are consistent with human psychophysics.

14

Asymmetry in Texture Discrimination

- Asymmetry is found in texture discriminability even when the constituent textures are the same.
- SH discriminability scores are: (a) 0.005 and (b) 0.018.

Comparison to Other Texture Synthesis Methods

• Original; Heeger and Bergen (1995); Spectral histogram

Discrimination Based on 2nd-order Moment

 Texture made of response distributions of same mean but different variance: SH can discriminate these.

17

Texture Boundary Detection

• Calculate texture gradient based on χ^2 distance in adjacent regions.

Discussion

- Filter selection
- Texture segregation
- Biological plausibility
 - Filters: no problem
 - Histograms: sketchy

Discussion (YC)

- What is a texture?
- Why did the visual system evolve to be sensitive to textures?
- See Oh and Choe (2006) for details.

References

- Liu, X., and Wang, D. (2002). A spectral histogram model for texton modeling and texture discrimination. Vision Research, 42:2617–2634.
- Oh, S., and Choe, Y. (2006). Segmentation of textures defined on flat vs. layered surfaces using neural networks: Comparison of 2D vs. 3D representations. *Neurocomputing*. In press.

21-1

21