
Synaptic Plasticity

Dayan and Abbott (2001) Chapter 8

Instructor: Yoonsuck Choe; CPSC 644 Cortical Networks

1

Introduction

• Activity-dependent synaptic plasticity:

– underlies learning and memory, and

– plays a crucial role in neural circuit development.

• Donald Hebb: Hebb rule for synaptic plasticity (1949)

– neuron A contributes to firing of neuron B, then

– synapse between A and B should be strengthened.

– Subsequent activation of A will lead to stronger activation of B.

• Hebb’s rule only increases synaptic strength. It can be

generalized to weaken strength if neuron A repeatedly fails to

activate B.

2

Biophysics of Synaptic Plasticity

• Plasticity is found in many brain regions: hippocampus, cortex, cerebellum,

etc.

• Plot above shows field potential recordings from CA1 region in rat

hippocampus.

– High-frequency stimulation leads to long-term potentiation (LTP).

– Low-frequency stimulation leads to long-term depression (LTD).

– Consistent with Hebb rule.

– Postsynaptic concentration of Ca2+ ions play a role in LTP and LTD.

3

Functional Modes of Synaptic Plasticity

Types of learning:

• Unsupervised learning

• Supervised learning

• Reinforcement learning

Types of synaptic plasticity:

• Hebbian synaptic plasticity

• Non-Hebbian synaptic plasticity: e.g., anti-Hebbian (decrease

strength when co-activated).

4

Stability and Competition

• Increasing synaptic plasticity is a positive feedback process:

Uncontrolled growth possible if unchecked.

• Dealing with unbounded growth:

– Impose a saturation constraint: 0 ≤ w ≤ wmax: Possible

problem of every weight turning wmax.

– Synaptic competition: Some weaken while some strengthen.

5

Network Model with Firing Rate Neurons

from Chapter 7

• Input vector u

• Weight vector w

• Output (postsynaptic activity) v

τr
dv

dt
= −v + w · u = −v +

NuX
b=1

wbvb,

or, after reaching steady state (set the above to 0):

v = w · u
6

Basic Hebb Rule: Correlation-Based

• Simplest form has:

τw
dw

dt
= vu,

where τw is the time constant that controls the rate of change in

w (learning rate).

• Ensemble averaging (〈·〉) over the inputs:

τw
dw

dt
= 〈vu〉

τw
dw

dt
= Q ·w or τw

dwb

dt
=

NuX
b′=1

Qbb′wb′ , where

Q = 〈uu〉 or Qbb′ = 〈ubub′ 〉.

7

Unbounded Growth in Basic Hebb Rule

• Length of weight vector:

|w|2 = w ·w =
X

b

w2
b .

Dot product of

τw
dw

dt
= vu

and w gives:

τw
d|w|2

dt
= 2v2, given

d|w|2

dt
= 2w ·

dw

dt
and w · u = v.

• Note v ≥ 0, so the above always increases (unless v = 0).

8

Discrete Updating Rule for Hebbian Learning

• Commonly used discrete update rule is:

w → w + εQ ·w,

where ε is analogous to 1
τw

in the continuous version.

• Even simpler implementation is:

w → w + εvu,

i.e., no ensemble averaging.

9

Covariance Rule

• We want to allow a single rule to allow both increase and

decrease in synaptic weight.

τw
dw

dt
= (v − θv)u,

where θv is a threshold. Synaptic weight will decrease if v < θv

and increase if v > θv .

• An alternative is to put the threshold on the input side:

τw
dw

dt
= v(u− θu),

• If θu = 〈u〉, we get

τw
dw

dt
= C ·w, where

C = 〈(u−〈u〉)(u−〈u〉)〉 = 〈uu〉−〈u〉2 = 〈(u−〈u〉)u〉.
10

Depression under Covariance Rule

• Homosynaptic depression: depression when nonzero input and

v < θv

τw
dw

dt
= (v − θv)u.

• Heterosynaptic depression: depression when input is inactive and

v > 0

τw
dw

dt
= v(u− θu)

• Implicit point: No input or output activity is required for LTD to

happen.

11

Instability of the Covariance Rule

• The covariance rule is unstable despite the threshold:

τw
d|w|2

dt
= 2v(v − 〈v〉),

where the time average of RHS is proportional to

〈v2〉 − 〈v〉2,

which is positive (it’s the variance of v).

12

BCM Rule

Bienenstock, Cooper, and Munro (1982).

• Synaptic plasticity requires both pre- and postsynaptic activity:

τw
dw

dt
= vu(v − θv).

• Unstable like Hebb rule if θv is kept fixed.

• Condition for stability is:

τθ
dθv

dt
= v2 − θv ,

where threshold adaptation rate τθ is typically smaller than τw .

• Sliding threshold implements synaptic competition: Increase in

one synaptic weight will increase output v, thus it will increase

threshold, making other synpases hard to adapt.

13

Preventing Unbounded Growth: Normalization

• Directly work on the weights rather than altering the threshold.

• Assumption is that increase in one synaptic weight should be

balanced by the decrease in other synaptic weights.

• Thus, global constraints are needed:

– Hold total sum of weights constant.

– Constrain the sum of squares of the weights.

14

Synaptic Normalization: Subtractive

• Add a subtractive term in weight update:

τw
dw

dt
= vu−

v(n · u)n

Nu
,

where Nu is the length of u, and n = (1, 1, 1, ...1), soP
wb = n ·w.

• This is a rigid constraint, since the sum of weights n ·w does not

change:

τw
dn ·w

dt
= vn · u

„
1−

n · n
Nu

«
= 0.

• Biological basis is unclear.

15

Synaptic Normalization: Multiplicative

• Oja’s rule (Oja, 1982)

τw
dw

dt
= vu− αv2w,

with a positive constant α.

• It is based more on a theoretical argument than biological.

• Stability can be analyzed as before:

τw
d|w|2

dt
= 2v2(1− α|w|2).

The steady state value of |w|2 becomes 1/α (set the RHS to 0

and solve for |w|2).

• In other words, the length of the weight vector is held constant.

16

Timing-Based Rules

• Plasticity is time-dependent: Spike Timing Dep. Plast. (STDP)

• Presynaptic spike time tpre and postsynaptic spike time tpost:

– If post fires first then pre, tpost − tpre < 0:

pre did not cause post to fire.

– If pre fires first then post, tpost − tpre > 0:

pre did cause post to fire.
17

Timing-Based Rule

• STDP applied to firing rate models:

τw
dw

dt
=

Z ∞
0

dτ(H(τ)v(t)u(t−τ)+H(−τ)v(t−τ)u(t)),

where H(τ) takes a shape similar to the plot B in the previous

page, depending on the sign of τ (sign(H(τ)) = sign(τ)).

• STDP is more naturally applied to spiking neuron models.

18

Unsupervised Learning

• Variants of Hebbian learning can be understood in the context of

unsupervised learning.

• Major area of research: cortical map formation.

– Orientation map, ocular dominance map, spatial frequencey

map, etc. etc.

– Activity-dependent (learning) and/or activity-independent

(genetically determined)?

19

Hebbian Learning and Principal Eigenvector

• Diagonalize the correlation matrix Q:

Q · eµ = λµeµ

where eµ is an eigenvector (mutually orthogonal) and λµ is an

eigenvalue (µ = 1, 2, ..., Nu).

• For correlation and covariance matrices, all eigenvalues are real

and nonnegative.

• We can express any Nu-dimensional vector as a linear

combination of the Nu eigenvectors eµ. So,

w(t) =

NuX
µ=1

cµ(t)eµ,

where cµ are the coefficients.

20

Principal Eigenvector (cont’d)

• From

w(t) =

NuX
µ=1

cµ(t)eµ,

w = [c1, c2, ...cµ...cNu]

26666666664

[e1]

[e2]

...

[eµ]

...

[eNu]

37777777775
= cE

we get

cµ(t) = w(t) · eµ

since

wE
−1

= c, and E
−1

= E
T

.

21

Principal Eigenvector (cont’d)
• Plugging

w(t) =
NuX
µ=1

cµ(t)eµ into τw
dw

dt
= Q · w we get

τw

NuX
µ=1

dcµ(t)

dt
eµ = Q ·

NuX
µ=1

cµ(t)eµ.

Multiply both sides with eν , and eµ · eν = δµν :

τw
dcµ

dt
= cµ(t)(Q · eµ) · eµ becomes τw

dcµ

dt
= cµ(t)λµeµ · eµ.

Since Qe = λe

τw
dcµ

dt
= cµ(t)λµ, so, we get

cµ(t) = c exp

λµt

τw

!
, where w(0)·eµ = cµ(0), so c = w(0)·eµ.

w(t) =
NuX
µ=1

exp

λµt

τw

! `
w(0) · eµ

´
eµ.

22

Principal Eigenvector (cont’d)

w(t) =

NuX
µ=1

exp

„
λµt

τw

«
(w(0) · eµ) eµ.

• Thus, for large t, the vector term with the highest λµ factor

(µ = 1 if eigenvalues have been sorted) will dominate, so

w ∝ e1.

• Finally, we get

v ∝ e1 · u

which is the projection of the input vector along the principal

eigenvector of the correlation/covariance matrix.

23

Principal Eigenvector: Issues

Principal eigenvector e1 = (1,−1)/
√

2

• The proportionality relation v ∝ e1 · u conceals the large

exponential factor, which can grow without bound.

• Saturation constraint can help, but it can prevent the weight

update to converge to the principal eigenvector (see figure

above), depending on the initial condition.

24

Principal Eigenvector: Use of Oja’s Rule

• Oja’s rule (Oja, 1982) can be used to prevent unlimited growth:

τw
dw

dt
= vu− αv2w.

• The rule gives w = e1/
√

α as t →∞.

25

Principal Eigenvector: Use of Subtractive

Normalization

• Averaging

τw
dw

dt
= vu−

v(n · u)n

Nu

,

over input samples gives:

τw
dw

dt
= Q ·w −

(w ·Q · n)n

Nu

.

• Growth of w is unaffected by the second term if eµ · n = 0. If

eµ · n 6= 0 weight will grow without bound.

• If principal eigenvector of Q is proportional to n,

Q · e1 − (e1 ·Q · n)n/N = 0, so principal eigenvector is

unaffected by the learning rule. Also, eµ · n = 0 for µ ≥ 2, so

w(t) = (w(0) · e1)e1 +

NuX
µ=2

exp

„
λµt

τw

«
(w(0) · eµ)eµ.

26

Hebbian Learning for PCA

• A: correlation rule, zero mean

• B: correlation rule, non-zero mean

• C: covariance rule, non-zero mean.

27

