
Model Neurons: Neuroelectronics

(Part II)

Dayan and Abbott (2001) Chapter 5 and Appendix A.4.

• Spike rate adaptaion.

• Voltage-dependent conductances.

• Hodgkin-Huxley model.

• Synaptic coductances.

Instructor: Yoonsuck Choe; CPSC 644 Cortical Networks
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Spike Rate Adaptation

• Gradual slowing of firing is called spike rate adaptaion.

• Can be modeled as a K+ conductance.

τm
dV

dt
= EL − V − rmgsra(V − EK) + RmIe, where

τsra
dgsra

dt
= −gsra.

In addition, when a spike occurrs,

gsra → gsra + ∆gsra.

2

Refractory Period

• During the refractory period immediately following firing, it is very

hard (relative refractory period) or impossible to fire no matter

what the input is (absolute refractory period).

• Refractory periods can be modeled as SRA conductance in the

previous page, or Vth can be momentarily increased and

decayed.
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Voltage-Dependent Conductances

• Single channel opening/closing is stochastic.

• Probability of channel opening/closing depends on

– Membrane potential, presence/absence of neurotransmitters,

Ca2+ concentration, etc.

• Conductance per unit area gi is determined by:

gi = channel conductance× channel density| {z }
max conductance ḡi

× fraction open| {z }
Pi

Thus, we get

gi = ḡiPi.
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Ion Channel Structure

Mikhailov et al. (2005) The EMBO Journal 24:4166–4175

• Ion channels consists of

several subunits.

• The vertical columns sur-

rounding the pore corre-

spond to one subunit.

• One subunit consists of sev-

eral α helices.

• The structure of the subunits

change depending on dif-

ferent electrochemical con-

ditions.
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Persistent Voltage-Dependent Conductances

• Channels activate (opening the gate) and deactivate (closing the

gate).

• Delayed rectifier K+ currents (that repolarize after a spike) have

such persistent conductance.

• PK (prob. of K+ channels opening) increases with high

membrane potential and decreases with low membrane potential.

• This probability depends on structural changes in four identical

subunits, each with probability n. So, we get:

PK = nk,

with k = 4.
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Persistent Conductance: Subunit activation n

• The subunit activation probability n is time-varying:

dn

dt
= αn(V )(1− n)− βn(V )n, (1)

where αn(V ) and βn(V ) are the voltage-dependent

opening/closing rate. To open, the subunit needs to be in a closed

state thus 1− n is multiplied, and similarly in order to close n is

multiplied.

• Letting dn/dt = 0, the steady state valued of n is:

αn(V )(1− n)− βn(V )n = 0,

and solving for n, we get:

n∞(V ) =
αn(V )

αn(V ) + βn(V )
.
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Persistent Conductance: Subunit activation n

• Dividing
dn

dt
= αn(V )(1− n)− βn(V )n,

with αn(V ) + βn(V ), we get:

1

αn(V ) + βn(V )

dn

dt
= n∞(V )− n.

Let τn(V ) = 1/(αn(V ) + βn(V )), we finally arrive at:

τn(V )
dn

dt
= n∞(V )− n.
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Persistent Conductance: Subunit activation n

• Based on energy requirement argument for moving a charge, we

get:

αn(V ) = Aα exp(−qBα/kbT ) = Aα exp(−BαV/VT )

βn(V ) = Aβ exp(−qBβ/kbT ) = Aβ exp(−BβV/VT )

• Plugging the above into:

n∞(V ) =
αn(V )

αn(V ) + βn(V )
, we get

n∞(V ) =
1

1 + (Aβ/Aα) exp((Bα −Bβ)V/VT )
.

This is basically a sigmoid function: g(x) = 1
1+a exp(−bx)

,

since αn(V ) is an increasing function (Bα < 0) and βn(V ) is

a decreasing function (Bβ > 0).
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Comparison of Energy-Requirement-Based vs. HH

• Hodgkin and Huxley empirically estimated αn and βn as:

αn(V ) =
0.01(V + 55)

1− exp(−.1(V + 55)
and

βn(V ) = 0.125 exp(−0.0125(V + 65))

• There is a close fit between HH and the energy-based derivation

in the previous pages.
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Transient Voltage-Dependent Conductances

• Na+ channels are transient, i.e., they activate and quickly
inactivate. Modeling activation with probability m and inactivation
with probability (1− h), we get:

PNa = m
k
h,

where k = 3 is a parameter.

• m, h, m∞(V ), h∞(V ), τm(V ), and τh(V ) are defined

similar to corresponding terms for n.
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The Hodgkin-Huxley Model

• Single compartment model:

cm
dV

dt
= −im +

Ie

A

• Hodgkin-Huxley model’s membrane currents:

im = ḡL(V−EL)+ ḡKn
4| {z }

gK=ḡKPK

(V−EK)+ ḡNam
3
h| {z }

gNa=ḡNaPNa

(V−ENa).
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The Hodgkin-Huxley Model: Simulation

• m: Na+ activation probability

(depolarization)

• h: Na+ non-inactivating prob-

ability (transient)

• n: K+ activation probability

(delayed rectifier)
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Synaptic Conductances

• Action potential reaching axon terminal opens voltage-gated

Ca2+ channels, triggering transmitter release.

• Transmitters bind and open postsynaptic ion channels.

– Direct opening of ion channels: ionotropic

– Indirect modulation plus ion channel opening: metabotropic

Table: Neurotransmitters by channel type

Type Excitatory Inhibitory

Ionotropic AMPA GABAA

Metabotropic NMDA GABAB
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Postsynaptic Conductances

• Postsynaptic conductance:

gs = ḡsP, where

P = PsPrel,

where Ps is the synaptic open probability and Prel the

transmitter release probability.

• Time-evolution is similar to voltage-dependent channels:

dPs

dt
= αs(1− Ps)− βsPs,

where open rate αs is modulated by neurotransmitter

concentration, and close rate βs is a constant.
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Postsynaptic Conductances

Starting from:
dPs

dt
= αs(1− Ps)− βsPs,

• Neurotransmitter concentration is usually modeled as a step

function, between t = 0 to t = T .

– During this, αs >> βs, so we can ignore the second term in

the equation above. Integrating the rest:

Ps(t) = 1 + (Ps(0)− 1) exp(−αst) for 0 ≤ t ≤ T .

– After t = T , αs << βs, so we can ignore the first term.

Integrating the rest:

Ps(t) = Ps(T ) exp(−βs(t− T )) for t ≥ T .
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Postsynaptic Conductances: Data vs. Fit

• The rising phase dominated by αs is very rapid.

• The falling phase dominated by βs is relatively slower.

• For such fast rising PSPs, Ps can be modulated with only βs

(instantaneous rise):

Ps = Pmax exp(−t/τs),

where τs = 1/βs. (Same as the last eq. in previous page.)
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Fast Postsynaptic Conductances: Time evolution

• The differential equation version of

Ps = Pmax exp(−t/τs)

is simply

τs
dPs

dt
= −Ps,

and after each presynaptic action potential,

Ps → Ps + Pmax(1− Ps).
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Slow Postsynaptic Conductances
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• Typically modeled as:

Ps = PmaxB(exp(−t/τ1)− exp(−t/τ2)),

where τ1 > τ2 , and
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,

where τrise = τ1τ2/(τ1 − τ2).
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Alpha Function
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• Another way to express Ps is:

Ps =
Pmaxt

τs
exp(1− t/τs),

which is called the “alpha function”.
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Synapses on INF Neurons

• The original INF without synaptic conductance is:

τm
dV

dt
= EL − V + RmIe.

• Synaptic conductances can be added to the INF model as follows:

τm
dV

dt
= EL − V − rmḡsPs(V − Es) + RmIe.
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