Model Neurons: Neuroelectronics

(Part I)

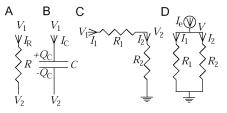
Dayan and Abbott (2001) Chapter 5 and Appendix A.4.

- Basic electrical circuits.
- Passive membrane model.
- Single compartment model.
- Integrate-and-fire neurons.
- Hodgkin-Huxley model.
- Synaptic coductances.

Instructor: Yoonsuck Choe; CPSC 644 Cortical Networks

Electrical Circuits: Serial Resistors

1

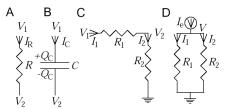


Kirchhoff's current law: At a node, all currents sum to zero (or, sum of incoming = sum of outgoing currents).

• Example C: at node next to V_2 , $I_1 = I_2$. Thus:

$$V_1 - V_2 = I_1 R_1, V_2 - 0 = I_2 R_2$$
$$V_1 = I_1 (R_1 + R_2), V_2 = I_2 R_2 = I_1 R_2$$
$$V_2 = \frac{V_1 R_2}{R_1 + R_2}.$$

Electrical Circuits



• Ohm's law:

$$V_{\rm R} = I_{\rm R} R,$$

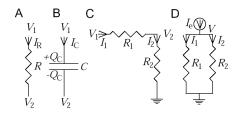
V: voltage, I: current, R: resistence.

• Charge across a capacitor:

$$CV_{\rm C} = Q_{\rm C}$$

$$C\frac{dV_{\rm C}}{dt} = \frac{dQ_{\rm C}}{dt} = I_{\rm C},$$
 V: voltage, Q: charge, I: current.

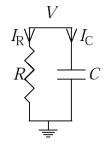
Electrical Circuits: Parallel Resistors



At the node next to $V, I_e = I_1 + I_2$.

$$I_1 = \frac{V}{R_1}, I_2 = \frac{V}{R_2}$$
$$I_e = \frac{V}{R_1} + \frac{V}{R_2} = \frac{R_1 + R_2}{R_1 R_2} V$$
Thus, total resistence of parallel resistors is $\frac{R_1 R_2}{R_1 + R_2}$.

Resistor-Capacitor Circuit (I)



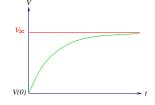
Case A: No external current source: $I_{\rm R} + I_{\rm C} = 0$.

$$I_{\rm R} + I_{\rm C} = \frac{V - 0}{R} + C \frac{dV}{dt} = 0$$
$$C \frac{dV}{dt} = -\frac{V}{R}$$

which is a homogeneous linear differential equation, and the general solution is (straight-forward integration after separating the variables): $V(t) = V(0) \exp(-t/RC)$.

5

Resistor-Capacitor Circuit (II, Cont'd)



The steady state of the membrane equation is:

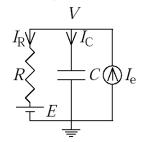
$$C\frac{dV}{dt} = \frac{E - V}{R} + I_{e} = 0,$$
$$V = E + I_{e}R,$$

which we define as $V_{\infty} = E + I_{\rm e}R$, and the time constant is $\tau = RC$, which gives the equation in the previous page:

$$V(t) = V_{\infty} + (V(0) - V_{\infty}) \exp(-t/\tau).$$

For the solution, first get the general solution $V_{\rm h}$ for the homogeneous case and set $V = V_{\rm h} \cdot u$, where u is a dummy variable. Solve for V.

Resistor-Capacitor Circuit (II)



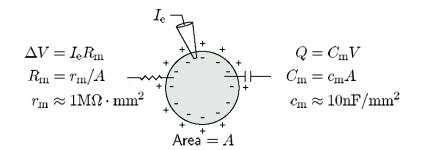
Case B: With external current source: $I_{\rm R} + I_{\rm C} = I_{\rm e}$.

$$I_{\rm R} + I_{\rm C} = \frac{V - E}{R} + C \frac{dV}{dt} = I_{\rm e}$$
$$C \frac{dV}{dt} = \frac{E - V}{R} + I_{\rm e}$$

which is a nonhomogeneous linear differential equation, and the general solution is: $V(t) = V_{\infty} + (V(0) - V_{\infty}) \exp(-t/\tau)$.

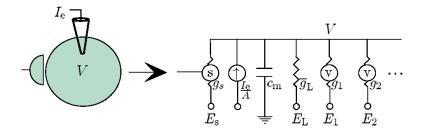
6

Single Compartment Model



- V: membrane potential
- *r*_m: specific membrane resistance
- cm: specific membrane capacitance
- *I*_e: input current
- Conductance: reciprocal of resistance, denoted g.

Single Compartment Model: Circuit



- Leakage current: $i_{\rm L} = \bar{g}_{\rm L} (V E_{\rm L}).$
- Membrane current: $i_{\rm m} = \sum_i g_i (V E_i)$.
- Input current: $I_{\rm e}/A$.
- Current across capacitor: $c_m \frac{dV}{dt} = I_C$.

9

Integrate and Fire Models

• Basically an RC circuit with the R-part serving as the leakage:

$$c_{\rm m}\frac{dV}{dt} = -\bar{g}_{\rm L}(V - E_{\rm L}) + \frac{I_{\rm e}}{A}.$$

• Multiplying both sides with r_m gives

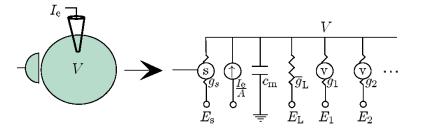
$$r_{\rm m} = 1/\bar{g}_{\rm L}, \tau_{\rm m} = r_{\rm m}c_{\rm m}, R_{\rm m} = r_{\rm m}/A$$
):

$$\tau_{\rm m} \frac{dV}{dt} = E_{\rm L} - V + R_{\rm m} I_{\rm e}$$

When $I_{\rm e}=0$, steady state voltage becomes $V=E_{\rm L}$, which is the resting membrane potential ($V_{\rm rest}$).

- When V reaches a threshold $V_{\rm th},$ generate a spike and reset the membrane potential to $V_{\rm rest}.$

Single Compartment Model: Equation



Incoming: $I_{\rm e}/A$; Outgoing: all the rest. So, we get:

$$\frac{I_{\rm e}}{A} = c_m \frac{dV}{dt} + \sum_i g_i (V - E_i),$$

which becomes:

$$c_m \frac{dV}{dt} = -i_m + \frac{I_e}{A}$$

10

Integrate and Fire Models: Analytic Solution

• Exact solution gives:

$$V(t) = E_{\rm L} + R_{\rm m} I_{\rm e} + (V(0) - E_{\rm L} - R_{\rm m} I_{\rm e}) \exp(-t/\tau_{\rm m}),$$

which is the same as in page 7.

- $V_{\infty} = E_{\rm L} + R_{\rm m}I_{\rm e}$, and this value should be greater than the threshold $V_{\rm th}$ for the neuron to fire at all. Given a fixed $E_{\rm L}$ and $R_{\rm m}$, the only thing that can change V_{∞} is then the input current $I_{\rm e}$.
- Given a constant input current I_e that allows spiking, the spiking frequency can be analytically calculated.
- First, calculate the time to first spike, when $V(t) = V_{\rm th}$ with $V(0) = V_{\rm rest}$, and solve for t.

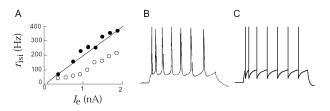
Integrate and Fire Models: Firing Rate

• The calculation comes out to:

$$t_{\rm isi} = \tau_{\rm m} \ln \left(\frac{R_{\rm m}I_{\rm e} + E_{\rm L} - V_{\rm rest}}{R_{\rm m}I_{\rm e} + E_{\rm L} - V_{\rm th}} \right)$$

- Since the neuron will fire every t_{isi} time units, this gives the "inter-spike interval" (or ISI).
- Thus, firing occurs with a period of $t_{\rm isi}$, and so the firing frequency is $r_{\rm isi}=1/t_{\rm isi}$.
- Note again that $V_{
 m th} < V_{\infty} = E_{
 m L} + R_{
 m m} I_{
 m e}$ must hold. Otherwise, no spikes.

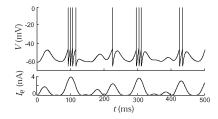
Integrate and Fire Model: Firing Rate



- Plot shows $r_{\rm isi}$ dependent on the input current (in INF vs. real data), and real neuron vs. INF firing.
- Without spike adaptation, INF fits the real data well (black dots).
- Spike adaptation means dynamic change in firing rate as a neuron keeps firing.

13

Integrate and Fire Model



- INF model with a fluctuating driving input is shown.
- The spikes (the long peaks) are shown just as a visualization, and they are not represented in the equation.
- Usually simple numerical integration is used for the simulation (use Taylor series expansion and drop higher-order terms):

$$\tau_{\rm m} \frac{\Delta V}{\Delta t} = E_{\rm L} - V(t) + R_{\rm m} I_{\rm e}(t)$$
$$\Delta V = \frac{(E_{\rm L} - V(t) + R_{\rm m} I_{\rm e}(t))}{\tau_{\rm m}} \Delta t$$
$$V(t + \Delta t) = V(t) + \Delta V.$$

14