#### **Membrane Properties and Neurotransmitter Actions**

Shepherd (2004) Chapter 2 by David A. McCormick

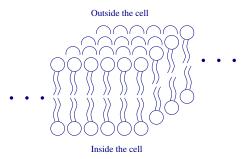
- Cell membrane.
- Ionic concentration.
- Ion channels and currents.
- Action potential.
- Neurotransmitter actions.

Instructor: Yoonsuck Choe; CPSC 644 Cortical Networks

#### Introduction

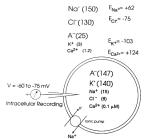
- Neurons with very similar morphology may act differently depending on the cell's **intrinsic properties**.
- Electrochemical and pharmacological properties become important.
- Electrochemical behavior may change due to ionic currents into and out of the cell and neurotransmitters that modulate such currents.

2


#### **Ion Channels**

Ion channels are large proteins embedded in the cell membrane, and they allow passage of specific ions.

- Pores: allows ions to pass through.
- Specificity: only a certain ion species can pass.
- Voltage- or neurotransmitter sensitive (or both).
- Can be modified by intracellular mechanisms.


## Lipid Bilayer

1



- Cell membrane is made up of lipid (i.e., fat) bilayer.
- Each lipid molecule consists of the polar head (round, hydrophilic) and non-polar tails (wiggly, hydrophobic).
- A very effective barrier of non-fatty stuff: ions, fluids, etc.

#### **Ionic Concentration Difference**

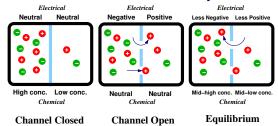


- lons are differentially concentrated inside vs. outside the cellular membrane.
- For example, Na<sup>+</sup> ions are 10 times more abundant in the extracellular space than inside the cell.
- So, if an opening (ion channel) is made on the membrane, the Na<sup>+</sup> ions outside will flow inside to reach balance in the concentration.

5

## **Calculating the Equilibrium Potential**

• The Nernst equation for ion *X*:


$$E_X = \frac{RT}{zF} \ln \frac{[X]_{\rm o}}{[X]_{\rm i}},$$

- where: R = gas const., T = abs. temp. z = valence, F = Faraday const., and  $[X]_n$  = concentration of X in compartment n (o: outside, i: inside).
- It is more conveniently written as:

$$E_X = \frac{58.2}{z} \log \frac{[X]_{\rm o}}{[X]_{\rm i}},$$

- assuming  $T=20^{\rm o}{\rm C}$  (room temperature).
- Note: compartment o is the reference point. Voltage is determined as voltage of compartment i relative to compartment o.

## **Chemical and Electrical Equilibrium**

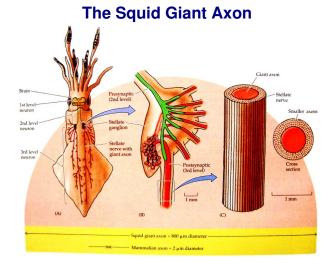


- Ions will move from compartments of higher concentration to lower concentration.
- However, the ions are not electrically neutral, so the two compartments will become positively/negatively charged.
- Such charge will hinder the movement of ions that are trying to achieve chemical balance.
- This will lead to a potential difference across the membrane.

## Equilibrium Potential: Squid Giant Axon

- In compartment 1, 10 mM of  $Na^+$ .
- In compartment 2 (reference), 1 mM of  $Na^+$ .
- Na<sup>+</sup> has valence 1 (z = 1).

$$E_X = \frac{58.2}{z} \log \frac{[X]_2}{[X]_1}.$$
$$E_{\text{Na}^+} = \frac{58.2}{1} \log \frac{1}{10} = -58.2 \text{mV}$$


- At the equilibrium potential, ions will not flow.
- If current is applied to move the membrane potential away from the equilibrium potential, ions will start to flow: i.e., conductance will increase (conductance = 1/resistance).

## Permeability

Permeability: The ease with which an ion diffuses across the membrane.

- Increased permeability lead to increased electrical conductance, and will bring the membrane potential closer to that ion's equilibrium potential.
- Higher permeability tends to keep the membrane potential near that ion's equilibrium potential.
- Lower permeability allows other kinds of ions to change the membrane potential away from that ion's equilibrium potential.

9



Adapted from Purves et al. (1997)

 Squid giant axons are very thick, so it was easy to experiment with it to study membrane properties.



Adapted from Purves et al. (1997)

- Dynamic controller kept the membrane potential at a fixed voltage, by adjusting the current injection level.
- Hodgkin and Huxley used this on the squid giant axon to study membrane properties.

## Goldman-Hodgkin-Katz Equation: Resting Membrane Potential

For the squid giant axon:

• Weighted mixture of all ionic currents considered:

$$V_{\rm m} = \frac{RT}{F} \cdot \ln \left[ \frac{P_{\rm K}[{\rm K}^+]_{\rm o} + P_{\rm Na}[{\rm Na}^+]_{\rm o} + P_{\rm Cl}[{\rm Cl}^-]_{\rm i}}{P_{\rm K}[{\rm K}^+]_{\rm i} + P_{\rm Na}[{\rm Na}^+]_{\rm i} + P_{\rm Cl}[{\rm Cl}^-]_{\rm o}} \right],$$

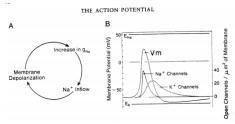
where  $P_X$  is the weight (relative permeability), which is

$$P_{\rm K}: P_{\rm Na}: P_{\rm Cl} = 1:0.04:0.45.$$

• Plugging in the actual values:

$$V_{\rm m} = 58.2 \log \left[ \frac{1 \cdot 20 + 0.04 \cdot 440 + 0.45 \cdot 40}{1 \cdot 400 + 0.04 \cdot 50 + 0.45 \cdot 560} \right] = -62 \,\mathrm{mV}$$

#### **Depolarization and Hyperpolarization**


- The resting membrane potential is negative (e.g., -62 mV), thus it is "polar".
- Increasing membrane potential is called "depolarization".
- Decreasing membrane potential is called "hyperpolarization".

13

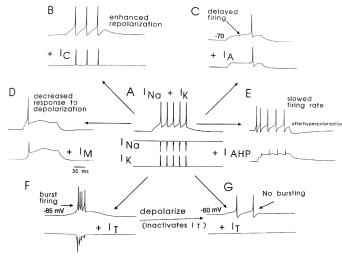
#### **Various Ionic Currents**

| Current               | Description                                                                                   | Function                                                                                                                            |
|-----------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| Na <sup>+</sup>       |                                                                                               |                                                                                                                                     |
| INAL                  | Transient; rapidly activating<br>and inactivating                                             | Action potentials                                                                                                                   |
| I <sub>Na.P</sub>     | Persistent; noninactivating                                                                   | Enhances depolarization; contribute:<br>to steady state firing                                                                      |
| Ca <sup>2+</sup>      |                                                                                               | ··· ····                                                                                                                            |
| IT, low<br>threshold  | "Transient"; rapidly<br>inactivating; threshold<br>negative to -65 mV                         | Underlies rhythmic burst firing                                                                                                     |
| IL, high<br>threshold | "Long-lasting"; slowly<br>inactivating; threshold<br>around -20 mV                            | Underlies Ca <sup>2+</sup> spikes that are<br>prominent in dendrites; involved<br>in synaptic transmission                          |
| I <sub>N</sub>        | "Neither"; rapidly inactivating;<br>threshold around -20 mV                                   | Underlies Ca <sup>2+</sup> spikes that are<br>prominent in dendrites; involved<br>in synaptic transmission                          |
| Ip                    | "Purkinje"; threshold around<br>- 50 mV                                                       |                                                                                                                                     |
| K*                    |                                                                                               |                                                                                                                                     |
| IK                    | Activated by strong<br>depolarization                                                         | Repolarization of action potential                                                                                                  |
| Ic                    | Activated by increases in<br>[Ca <sup>2+</sup> ] <sub>i</sub>                                 | Action potential repolarization and<br>interspike interval                                                                          |
| I <sub>AHP</sub>      | Slow afterhyperpolarization;<br>sensitive to increases in<br>[Ca <sup>2+</sup> ] <sub>i</sub> | Slow adaptation of action potential<br>discharge; the block of this<br>current by neuromodulators<br>enhances neuronal excitability |
| IA                    | Transient; inactivating                                                                       | Delayed onset of firing; lengthens<br>interspike interval; action<br>potential repolarization                                       |
| I <sub>M</sub>        | "Muscarine" sensitive;<br>activated by depolarization;<br>noninactivating                     | Contributes to spike frequency<br>adaptation; the block of this<br>current by neuromodulators<br>enhances neuronal excitability     |
| I <sub>h</sub>        | Depolarizing (mixed cation)<br>current that is activated<br>by hyperpolarization              | Contributes to rhythmic burst firing<br>and other rhythmic activities                                                               |
| IKJeak                | Contributes to neuronal resting<br>membrane potential                                         | The block of this current by<br>neuromodulators can result in a<br>sustained change in membrane<br>potential                        |

#### **Action Potential (or Spike)**



- Na<sup>+</sup> channels open, triggered by depolarization.
- The increase in membrane voltage due to depolarization triggers a more  $Na^+$  channels to open, thus further depolarizing the membrane (transient sodium current  $I_{Na,t}$ ).
- Such depolarization will trigger deploarization in neighboring membranes.
- Since I<sub>Na,t</sub> is transient, it will quickly inactivate, and further more, voltage-gated K<sup>+</sup> channels will open, thus "repolarizing" (potassium current I<sub>K</sub>). I<sub>K</sub> is slower.


14

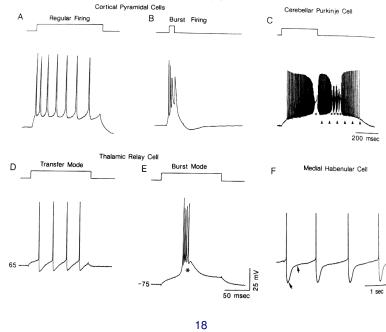
#### **Some Notable Ionic Currents**

- $I_{Na,t}$ : Transient Na<sup>+</sup> current action potential.
- I<sub>K</sub>: activated by strong depolarization repolarization.
- $I_T$ : Transient Ca<sup>2+</sup> current low threshold burst firing.
- I<sub>h</sub>: activated by hyperpolarization depolarizing current related to burst firing.
- Ca<sup>2+</sup> currents in general: Involved in diverse functions such as neurotransmitter release, synaptic plasticity, neurite outgrowth during development, and even gene expression.

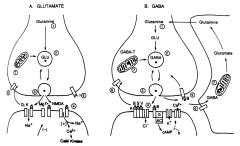
Lesson: There are many currents related to diverse functions.

#### **Firing Pattern Dependent on Ionic Currents**




• The presence or absence of different ionic currents drastically alter the spike behavior of neurons.

17

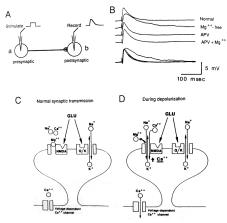

#### **Neuronal Communication**

- Gap junctions: Direct flow of current across cells.
- Ephaptic interactions: Electrical field effect.
- Chemical synapses: Neurotransmitter action.

#### **Firing Modes of Typical Neurons**



# Chemical Synapses




- Neurotransmitter release and binding.
- Channel opening or secondary effects (G-protein).
- Re-uptake of neurotransmitter by presynaptic terminal (GLU) or glia (GABA).
- GLU induces excitatory post synaptic potential (EPSP).
- GABA induces inhibitory post synaptic potential (IPSP).

#### **Neurotransmitter and Ionic Currents**

| Response                                                       | Neurotransmitter                       | Receptor                          |
|----------------------------------------------------------------|----------------------------------------|-----------------------------------|
| $\uparrow I_{\rm M}$ $\uparrow I_{\rm K}$                      | Glutamate                              | Quisqualate/kainate               |
| $\uparrow I_{\rm Na}, \uparrow I_{\rm K}, \uparrow I_{\rm Ca}$ | Glutamate                              | N-Methyl-D-aspartate              |
|                                                                | Acetylcholine                          | (NMDA)                            |
|                                                                |                                        | Nicotinic                         |
| ↑ <i>I</i> <sub>C1</sub>                                       | γ-Aminobutryic acid                    | GABAA                             |
|                                                                | Glycine                                |                                   |
| $\uparrow I_{K,IR}$                                            | Acetylcholine                          | M <sub>2</sub>                    |
| *K,IX                                                          | Norepinephrine                         | $\alpha_2$                        |
|                                                                | Serotonin (5-hydroxytryptamine [5-HT]) | 5-HT <sub>1</sub>                 |
|                                                                | GABA                                   | GABAB                             |
|                                                                | Dopamine                               | D <sub>2</sub>                    |
|                                                                | Adenosine                              | A <sub>1</sub>                    |
|                                                                | Somatostatin                           | SST <sub>5</sub>                  |
|                                                                | Enkephalins                            | $\mu, \delta$                     |
| ↓ I <sub>AHP</sub>                                             | Acetylcholine                          | Muscarinic                        |
| * Anr                                                          | Norepinephrine                         | $\beta_1$                         |
|                                                                | Serotonin                              | 5-HT <sub>7</sub>                 |
|                                                                | Histamine                              | H <sub>2</sub>                    |
|                                                                | Glutamate                              | Glutamate metabotropic            |
| ↓ I <sub>K,leak</sub>                                          | Acetylcholine                          | Muscarinic                        |
| · · N, ICAK                                                    | Norepinephrine                         | $\alpha_1$                        |
|                                                                | Serotonin                              | 5-HT <sub>2</sub>                 |
|                                                                | Glutamate                              | Glutamate metabotropic            |
| ↓ I <sub>Ca</sub>                                              | Multiple transmitters                  | · · · · · · · · · · · · · · · · · |

## Action of NMDA



• At high-frequency activation, Mg<sup>+</sup> will be unblocked, leading to long term potentiation (LTP), which is believed to play an important role in memory.

21

#### **Neurotoxins and Drugs**

- Agonist: Binds and turns on ion channel; Antagonist: Binds and blocks ion channel; Allosteric modulator: Binds and up- or down-modulate channel activity.
- Tetrodotoxin (TTX): Binds to the pores of voltage-gated Na<sup>+</sup> channels, thus blocking action potentials (found in puffer fish, toads, etc.).
- Benzodiazepine, Barbiturate: Binds to GABA-A receptors to up-modulate GABA binding.
- Bicuculine: Occupies GABA-A receptors, preventing GABA from activating the receptor. Overdose can lead to epilepsy.

22