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What Is the Meaning of ...

Words

↓
Representations

↓
Brain Activation Patterns

↓
Single Neuronal Spikes −→ Let’s focus on perceptual primitives,

like the visual cortical edge detectors.
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What Is the Meaning of the Green

Lights?

• It is hard to get any idea at all.

• If these are neuronal spikes, there’s no hope in

understanding the meaning of these!
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They Are Visual Cortical Responses

to Oriented Lines
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What Happened Here?

Input not known Input known

↓ ↓
Clueless Meaning clear

Do we need the input then, to understand the meaning?
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Two Approaches to Meaning
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S
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(a) External observer (b) Internal observer

• Fom the outside – seems straightforward but

artificial.

→ Neuroscientist’s approach. 3rd person.

• From the inside – seems impossible but natural.

→ The brain’s approach. 1st person.

Why does the natural seem more impossible?
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Possible Solution: Allow Action

fI
S

• A major problem in the picture is the passiveness of

the whole situation.

• Adding action can help solve the problem.

• But why and how?
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Approach: Semantic Grounding

Through Action

π

Filter
Bank

Sensor
Array

sfI a

Action
Vector

Visual FieldVisual Environment

Action

Perception

• Direct access only to encoded internal state.

• Action: can move the gaze.

• How does this solve the grounding problem?
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Action for Unchanging Internal State

• Diagonal motion causes the internal state to remain

unchanging over time.

• Property of such a movement exactly reflects the

property of the input I : Semantics figured out

through action.
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Action for Unchanging Internal State

• Diagonal motion causes the internal state to remain

unchanging over time.

• Property of such a movement exactly reflects the

property of the input I : Semantics figured out

through action.
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Task

• Given an encoded perceptual signal s, we want to

learn action a that maximizes the invariance in the

internal state over time.

• The learned action a will give meaning to s.

• This is basically a reinforcement learning task.
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Methods: Orientation Response
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Perceptual state:

s = arg max
1≤θ≤n

rθ.
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Methods: Reinforcement Learning

No reward Reward!

R(s, a): How desirable is action a in state s?

• R(s, a) increased if action a in state s leads to

unchanged internal state.

• R(s, a) decreased otherwise.
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Reward Probability Table

R(s ,a )
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• Reward probability R(s, a) can be tabulated.

• In an ideal case (world consists of straight lines only), we expect

to see two diagonal matrices (shaded gray, above).
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Input Images

Synthetic Natural (plant) Natural (oleander)
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Results: Learned R(s, a)

(a) Initial (b) Ideal (c) Final

Synthetic image

(a) Initial (b) Ideal (c) Plant (d) Oleander

Natural images

• Learned R(s, a) close to ideal.
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Results: Error in R and Average ρ
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• Left: Root-mean-squared error in R(s, a) compared

to the ideal case.

• Right: running average of immediate reward ρ.
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Results: Error in R and Average ρ
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Results: Demo
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Results: Gaze Trajectory

(a) Input (b) Initial (c) Final
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Summary
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• (1) Using invariance as the only criterion, (2)

particular action pattern was learned, (3) that has

the same property as the input that triggered the

sensors.
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Related Work

im
ag

es
fro

m
w

ik
ip

ed
ia

Kant Wittgenstein

• Kant: bottom-up + prior knowledge: 3rd person

• Wittgenstein: meaning in language use: 1st person

• Perceptual grounding (Barsalou et al. 2003)

• Sensorimotor grounding (?)

• Sensormotor account of vision and consciousness (O’Regan and

Noë 2001).
28

Discussion

• Main contribution: Discovery of the invariance

criterion for sensorimotor-based semantic

grounding.

• Importance of self-generated action in autonomous

understanding.

• Richer motor primitive repertoire can lead to richer

understanding.

• Tool use can dramatically augment motor primitive

repertoire, and thus understanding.
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Conclusions

We must ask how the brain understands itself.

• Action is important for understanding/grounding.

• Simple criterion (state invariance) can help link

perceptual coding with meaningful action.
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More Advanced Results

32

Simultaneous Learning of

Perceptual Primitives and R(s, a)

Reference RFs

Reordered final RFs

Reordered finalR(s, a)

• Both can be learned at the same time!
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Motor vs. Sensory Representation

Compared
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(a) Visual Memory (b) Motor Memory

• Comparison of PCA projection of 1,000 data points

in the visual and motor memory representations.

• Motor memory is clearly separable.
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Speed and Accuracy of Learning in

Motor vs. Sensory Representation
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(a) Training Speed (b) Generalization Accuracy

• Motor-based memory resulted in faster and more

accurate learning (10 trials).
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