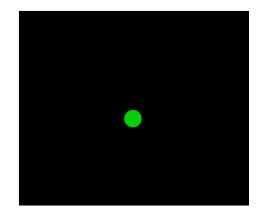
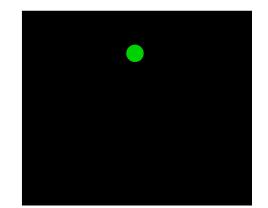

Motor Exploration Is Key to Decoding Perceptual Primitives

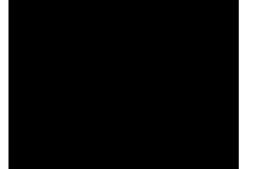
ARMADILLO 2010 October 22, 2010

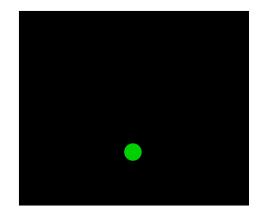

Yoonsuck Choe, Ph.D. Department of Computer Science & Engineering Texas A&M University

With Noah Smith, Huei-Fang Yang, and Navendu Misra.

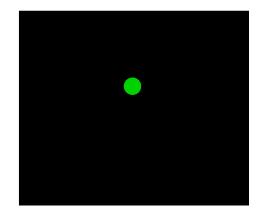
What Is the Meaning of ...



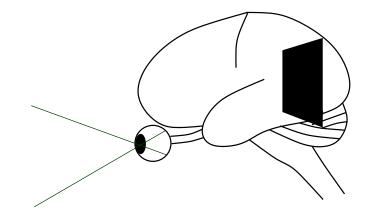




1

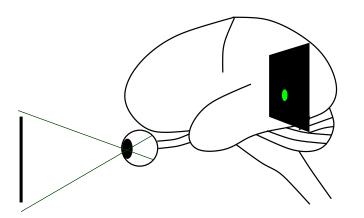


What Is the Meaning of the Green Lights?


- It is hard to get any idea at all.
- If these are neuronal spikes, there's no hope in understanding the meaning of these!

They Are Visual Cortical Responses

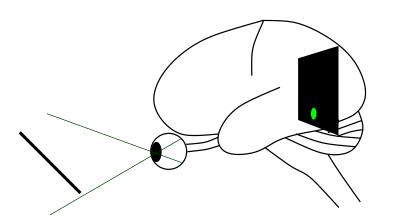
5


7

to Oriented Lines

They Are Visual Cortical Responses

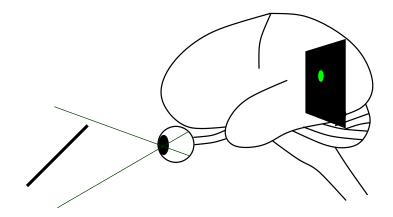
to Oriented Lines


They Are Visual Cortical Responses

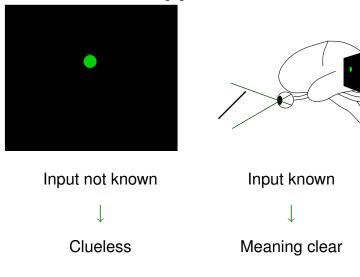
to Oriented Lines

They Are Visual Cortical Responses

to Oriented Lines

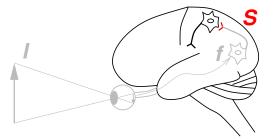


They Are Visual Cortical Responses

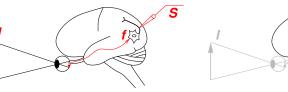

7

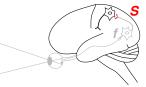
7

to Oriented Lines



What Happened Here?

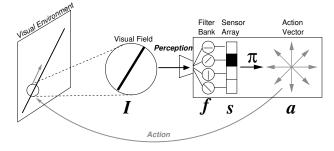

Do we need the input then, to understand the meaning?


Possible Solution: Allow Action

- A major problem in the picture is the **passiveness** of the whole situation.
- Adding action can help solve the problem.
- But why and how?

Two Approaches to Meaning

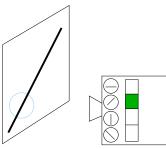
(a) External observer


(b) Internal observer

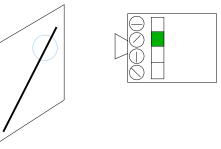
- Fom the outside seems straightforward but artificial.
 - \rightarrow Neuroscientist's approach. 3rd person.
- From the inside seems impossible but natural.
 - \rightarrow The brain's approach. 1st person.

Why does the natural seem more impossible?

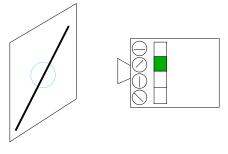
Approach: Semantic Grounding


Through Action

- Direct access only to encoded internal state.
- Action: can move the gaze.
- How does this solve the grounding problem?


8

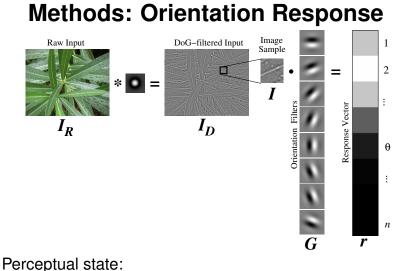
Action for Unchanging Internal State


- Diagonal motion causes the *internal state* to **remain unchanging** over time.
- Property of such a movement **exactly reflects** the property of the input *I*: Semantics figured out through action.

Action for Unchanging Internal State

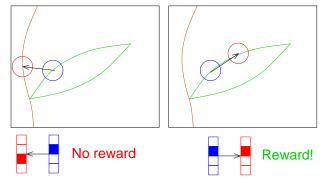
- Diagonal motion causes the *internal state* to **remain unchanging** over time.
- Property of such a movement **exactly reflects** the property of the input *I*: Semantics figured out through action.

Action for Unchanging Internal State



- Diagonal motion causes the *internal state* to **remain unchanging** over time.
- Property of such a movement **exactly reflects** the property of the input *I*: Semantics figured out through action.

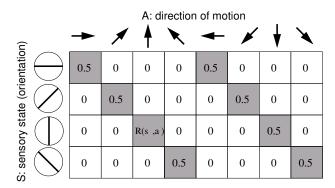
Task


- Given an encoded perceptual signal *s*, we want to learn action *a* that **maximizes the invariance** in the internal state over time.
- The learned action *a* will give **meaning** to *s*.
- This is basically a reinforcement learning task.

12

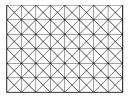
 $s = \arg \max r_{\theta}$. $1 \le \theta \le n$

Methods: Reinforcement Learning



R(s, a): How desirable is action a in state s?

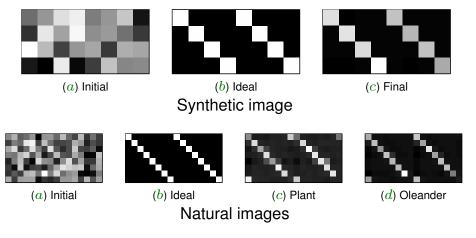
- R(s, a) increased if action a in state s leads to unchanged internal state.
- R(s, a) decreased otherwise.


19

Reward Probability Table

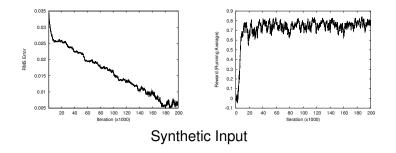
- Reward probability R(s, a) can be tabulated.
- In an ideal case (world consists of straight lines only), we expect to see two diagonal matrices (shaded gray, above).

Input Images



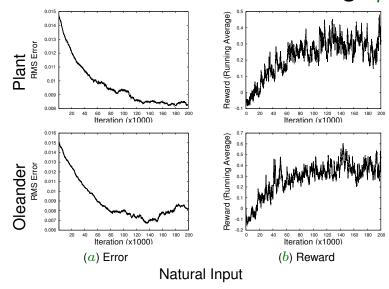
Natural (plant)

Synthetic

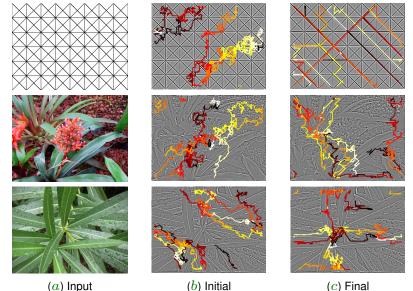

Natural (oleander)

Results: Learned R(s, a)

• Learned R(s, a) close to ideal.


Results: Error in R and Average ρ

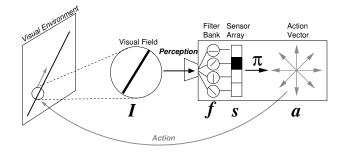
- Left: Root-mean-squared error in R(s, a) compared to the ideal case.
- Right: running average of immediate reward ρ .



Results: Error in R and Average ρ

Results: Demo

Results: Gaze Trajectory


Kant

- Wittgenstein
- Kant: bottom-up + prior knowledge: 3rd person
- Wittgenstein: meaning in language use: 1st person
- Perceptual grounding (Barsalou et al. 2003)
- Sensorimotor grounding (?)

images from wikipedia

· Sensormotor account of vision and consciousness (O'Regan and Noë 2001).

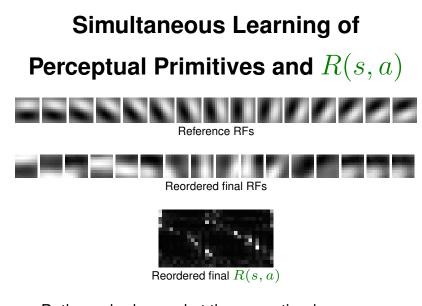
Summary

• (1) Using **invariance** as the only criterion, (2) particular action pattern was learned, (3) that has the same property as the input that triggered the sensors.

Discussion

- Main contribution: Discovery of the invariance criterion for sensorimotor-based semantic grounding.
- Importance of self-generated action in autonomous understanding.
- Richer motor primitive repertoire can lead to richer understanding.
- Tool use can dramatically augment motor primitive repertoire, and thus understanding.

Conclusions


We must ask how the brain understands itself.

- Action is important for understanding/grounding.
- Simple criterion (state invariance) can help link perceptual coding with meaningful action.

More Advanced Results

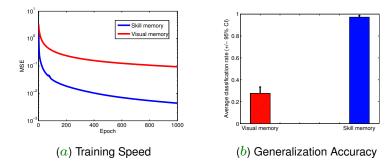
Credits

- Contributors: Kuncara A. Suksadadi, S. Kumar Bhamidipati, Noah Smith, Stu Heinrich, Navendu Misra, Huei-Fang Yang, Daniel C.-Y. Eng
- Choe et al. (2008, 2007); Choe and Smith (2006);
 Choe and Bhamidipati (2004)

• Both can be learned at the same time!

30

33


<figure>

Motor vs. Sensory Representation

- Comparison of PCA projection of 1,000 data points in the visual and motor memory representations.
- Motor memory is clearly separable.

Speed and Accuracy of Learning in

Motor vs. Sensory Representation

 Motor-based memory resulted in faster and more accurate learning (10 trials).

34

References

- Barsalou, L. W., Simmons, W. K., Barbey, A. K., and Wilson, C. D. (2003). Grounding conceptual knowledge in modalityspecific systems. *Trends in Cognitive Sciences*, 7:84–91.
- Choe, Y., and Bhamidipati, S. K. (2004). Autonomous acquisition of the meaning of sensory states through sensoryinvariance driven action. In Ijspeert, A. J., Murata, M., and Wakamiya, N., editors, *Biologically Inspired Approaches to Advanced Information Technology*, Lecture Notes in Computer Science 3141, 176–188. Berlin: Springer.
- Choe, Y., and Smith, N. H. (2006). Motion-based autonomous grounding: Inferring external world properties from internal sensory states alone. In Gil, Y., and Mooney, R., editors, *Proceedings of the 21st National Conference on Artificial Intelligence(AAAI 2006)*. 936–941.
- Choe, Y., Yang, H.-F., and Eng, D. C.-Y. (2007). Autonomous learning of the semantics of internal sensory states based on motor exploration. *International Journal of Humanoid Robotics*, 4:211–243.
- Choe, Y., Yang, H.-F., and Misra, N. (2008). Motor system's role in grounding, receptive field development, and shape recognition. In *Proceedings of the Seventh International Conference on Development and Learning*, 67–72. IEEE.
- O'Regan, J. K., and Noë, A. (2001). A sensorimotor account of vision and visual consciousness. *Behavioral and Brain Sciences*, 24(5):883–917.