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Overview

• Knowledge representation

• Knowledge bases

• Logic and Frames

• Propositional Logic

• Inference rules

• Normal forms
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Knowledge Representation

There are basically two classes of representations in traditional AI:

• Logic: methods based on first-order predicate calculus

(mathematical logic)

• Frames: methods based on networks of nodes representing

objects or concepts, and labeled arcs representing relations

among nodes

These two are competitive, but complementary.
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Representation Hypothesis

A central tenet in AI is the representation hypothesis, which states

that intelligent behavior is based on

• representation of input and output data as symbols

• reasoning by processing symbol structures, resulting in new

symbol structures

The problem then is what the representations and reasoning process

should be.
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Strengths and Weaknesses of Logic and Frames

Logic (predicate calculus)

• Strengths: (1) logical power, (2) rigorous mathematical foundation

• Weaknesses: (1) slow (search) (2) rigidity (T/F)

Frames

• Strengths: (1) supports defaults (data is seldom complete), (2)

procedural attachment(*)

• Weaknesses: weak logical power

(*) Procedural attachment: pullers (if needed), pusher (if added), if

referenced, if deleted, if changed, etc.
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Alternatives to the Representation Hypothesis

There are several alternatives:

• analog information: continuous values

• special-purpose hardware: domain specific functions such as

vision

• neural networks: subsymbolic approachs

• holographic memories

• etc.
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Knowledge Base Systems

Domain-independent algorithms: Inference engine

Domain-specific content: Knowledge base

• KB: set of sentences in a formal language

• KB is declarative: tell what we want, not how we want it done (i.e.

procedural)
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KB Constructs

• Knowledge base: how to represent knowledge with sentences or

formulas→ various forms of logic

• Inference engine: how to generate new sentences or formulas

given old ones in the KB→ various forms of inference procedures
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Logic: Language for KBs

Logic is the representational language for KBs:

• logic consists of syntax (sentence structure) and semantics

(how sentences relate to the real world; T/F values)

• interpretation: fact to which a sentence refers (T/F assignment)

• inference: deriving new sentences from old ones

Inference procedure

• sound: no false sentences can be derived from the KB using the

inference procedure

• complete: inference procedure can derive all true conclusions

from a set of premises
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Types of Logic

Ontological: what exists in the world?

Epistemological: what can we know?

Language Ontological Epistemological

Propositional Logic facts T/F/?

First-order Logic facts, objects, relations T/F/?

Temporal Logic facts, objects, relations, times T/F/?

Probability Theory facts degree of belief 0..1

Fuzzy Logic degree of truth degree of belief 0..1

* first-order logic == predicate calculus

Let’s begin with propositional logic.
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Well-Formed Formulas in Propositional Logic

Components of well-formed formulas (sentences):

• propositional symbols (atoms): P, Q, R

• parentheses: ( )

• connectives: ¬,∧,∨,→,↔
• constants: True, False
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Well-Formed Formulas (Cont’d)

Well-Formed Formulas (wff): Syntax

wff ⇒ atom|constant

wff ⇒ (¬wff)

wff ⇒ (wff ∨ wff)

| (wff ∧ wff)

| (wff → wff)

| (wff ↔ wff)

Operator precedence: ¬;∧,∨;→,↔ (decreasing order)
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Propositional Logic: Semantics

• atoms can take on True or False values.

• an interpretation assigns specific truth values to the atoms.

• for a formula with n atoms, there are 2n possible truth

assignments.

• a formula is true under an interpretation iff the formula evaluates

to True with the assignment of truth values within the

interpretation.

• a formula is valid iff it is True under all interpretations.

• a formula is inconsistent (unsatisfiable) iff it is False under all

interpretations.

• a formula G is valid if ¬G is inconsistent
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Propositional Logic: Semantics (cont’d)

• if a formula F is True under an interpretation I , then we say I

satisfies F . We also say I is a model for F

• if formula F is False under interpretation I , then we say I

falsifies F

• two formulas F and G are equivalent iff F and G have the same

truth values under every interpretation I :

F ↔ G

• there can be many models (at least one) of a formula F if F is

satisfiable.
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Basic Laws of Propositional Logic

• F ∨G = G ∨ F ,

F ∧G = G ∧ F (commutative)

• (F ∨G) ∨H = F ∨ (G ∨H),

(F ∧G) ∧H = F ∧ (G ∧H),(associative)

• F ∨ (G ∧H) = (F ∨G) ∧ (F ∨H),

F ∧ (G ∨H) = (F ∧G) ∨ (F ∧H) (distributive)

• F ∨ False = F, F ∧ False = False

• F ∨True = True

F ∧True = F

• F ∨ ¬F = True

F ∧ ¬F = False
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Basic Formulas (cont’d)

• ¬(¬F ) = F

• ¬(F ∨G) = ¬F ∧ ¬G

¬(F ∧G) = ¬F ∨ ¬G (De Morgan’s Law)

• F ↔ G = (F → G) ∧ (G→ F )

• F → G = ¬F ∨G

• F ∧ F = F

F ∨ F = F
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Inference Rules

• Modus Ponens:

F → G, F

G

• Unit Resolution:

F ∨G,¬G

F

• Resolution:

F ∨G,¬G ∨H

F ∨H
or equivalently

¬F → G, G→ H

¬F → H
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Normal Forms (I)

• literals: atom|¬atom

• clauses: disjunction of 1 or more literals

literal ∨ literal ∨ ...

• terms: conjunction of 1 or more literals

literal ∧ literal ∧ ...
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Normal Forms (II)

• Conjunctive Normal Form: conjunction of clauses

C1 ∧ C2 ∧ C3...

e.g. (¬F ∨G ∨H) ∧ (¬G) ∧ (K ∨ L)

• Disjunctive Normal Form: disjunction of terms

T1 ∨ T2 ∨ T3...

e.g. (¬F ∧G ∧H) ∨ (¬G) ∨ (K ∧ L)
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Key Points

• Knowledge representation: logic and frames, pros and cons

• Knowledge bases: the basic components

• Propositional Logic: basic laws

• Inference rules: what is inference, basic inference rules

• Normal forms: definitions
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Overview

* Don’t confuse formula F with false constant False (in bold).

• Horn clauses

• Theorem proving

• Resolution in propositional logic
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Horn Clauses

Horn clauses

• clauses that contain≤ 1 positive literal:

F ∨ ¬G ∨ ¬H,¬F ∨G

Horn Normal Form: conjunction of horn clauses

• for example, (F ∨ ¬G ∨ ¬H) ∧ (¬F ∨G)

• it is the same as: ((G ∧H)→ F ) ∧ (F → G)

• Easier to do inference (computationally less intensive) than other

normal forms.

• Restrictive, so not all formulas can be represented in horn normal

form.
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Horn Clauses

Basically, horn clauses are implications where the conclusion part

consist of only a single literal. Thus, these two are equivalent.

F ∨ ¬G ∨ ¬H

(G ∧H)→ F

As you will see later, this form is suitable for theorem proving with

backward chaining.
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Converting to Normal Forms

You can transform any formula into a normal form by applying the following rules:

1. Use the laws:

F ↔ G = (F → G) ∧ (G → F )

F → G = ¬F ∨G

to eliminate→ and↔
2. Repeatedly use the law:

¬(¬F ) = F

and the De Morgan’s laws:

¬(F ∨G) = ¬F ∧ ¬G

¬(F ∧G) = ¬F ∨ ¬G

to bring negation signs immediately before atoms.

3. Repeatedly use the distributive laws:

F ∨ (G ∧H) = (F ∨G) ∧ (F ∨H),

F ∧ (G ∨H) = (F ∧G) ∨ (F ∧H)

and the other laws as necessary.
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Exercise: Converting to Normal Forms

Convert the following into CNF and DNF:

(P ∨ ¬Q)→ R

• DNF :

(P ∨ ¬Q)→ R = ¬(P ∨ ¬Q) ∨R :remove connective

= (¬P ∧ ¬(¬Q)) ∨R :by De Morgan’s Law

= (¬P ∧Q) ∨R :remove double negation

• CNF : try it yourself (hint: use the distributive law)

Another exercise: find the CNF of (P ∧ (Q→ R))→ S)

25

Logical Consequence

G is a logical consequence of formulas F1, F2, ..., Fn iff for any

interpretation I for which F1 ∧ F2 ∧ ... ∧ Fn is true, G is also true

(i.e. (F1 ∧ F2 ∧ ... ∧ Fn)→ G is valid).

c.f. Modus Ponens
F, F → G

G

• (F1 ∧ F2 ∧ ... ∧ Fn)→ G is called a theorem.

• F1, F2, ..., Fn are called axioms (postulates, premises) of G

• G is called the conclusion.

26

Valid vs. Inconsistent

Theorem: G is a logical consequence of F1, F2, ..., Fn iff the

formula F1 ∧ F2 ∧ ... ∧ Fn ∧ ¬G is inconsistent

Proof: G is a logical consequence of F1, F2, ..., Fn iff

(F1 ∧ F2 ∧ ... ∧ Fn)→ G (lets call this H) is valid. Since H is

valid iff ¬H is inconsistent, H is valid iff

¬((F1 ∧ F2 ∧ ... ∧ Fn)→ G) is inconsistent. Because

¬((F1 ∧ F2 ∧ ... ∧ Fn)→ G)

= ¬(¬(F1 ∧ F2 ∧ ... ∧ Fn) ∨G)

= (¬(¬(F1 ∧ F2 ∧ ... ∧ Fn))) ∧ ¬G

= (F1 ∧ F2 ∧ ... ∧ Fn) ∧ ¬G,

H is valid iff F1 ∧ F2 ∧ ... ∧ Fn ∧ ¬G is inconsistent.

27

Caveats

Anything is a logical consequence of False (recall that G is a logical

consequence of F iff F → G is valid).

False→ G

= ¬False ∨G

= True ∨G

= True

(1)

Thus, for a result of a theorem to be meaningful, the premises should

be consistent.
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Logical Consequence: Proving

Model checking (truth table, search), or algebraic application of

inference rules:

1. Truth table: the conclusion G must be true whenever the

premises F1 ∧ F2 ∧ ... ∧ Fn is true.

2. Prove that (F1 ∧ F2 ∧ ... ∧ Fn)→ G is valid:

• truth table, or

• algebraically reduce the formula to True

3. Prove that F1 ∧ F2 ∧ ... ∧ Fn ∧ ¬G is inconsistent:

• truth table, or

• algebraically reduce the formula to False
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Theorem Proving

Given a set of facts (ground literals) and a set of rules, a desired

theorem can be proved in several different ways:

• Forward Chaining: use known facts and rules to discover (or

deduce) new facts. When the desired theorem is deduced, stop.

• Backward Chaining: work backward from the theorem by finding

rules that could deduce it; then try to deduce the premises of

those rules.

• Resolution: proof by contradiction. Using ground facts, rules, and

the negation of the theorem, try to derive False by resolution

steps. To prove F → G is valid, prove F ∧ ¬G (i.e.

¬(F → G)) is inconsistent.
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Theorem Proving: Example

Given that the following are all True,

A (1)

B (2)

D (3)

A ∧B → C (4)

C ∧D → E (5)

Prove that E is valid. Let’s consider forward chaining and backward

chaining.
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Forward Chaining

Given that the following are all True,

A (1)

B (2)

D (3)

A ∧B → C (4)

C ∧D → E (5)

Since we know that A and B are true (1 and 2), C is also true (from

4). Let’s call this (6), i.e. C = True. From this, and the fact that D is

true, we come to the conclusion that E is true (3, 5, and 6).
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Backward Chaining

Given that the following are all True,

A (1)

B (2)

D (3)

A ∧B → C (4)

C ∧D → E (5)

Find a rule where E is deduced (5). For this rule to be true when E is

true, C and D must be true. Since D = True is given (3), we only

need to show that C is true. Find a rule where C is deduced (4), and

repeat the same process until all premises are deduced.

* this strategy is ideal for Horn Normal Form.
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Resolution: An Overview

Given formulas in conjunctive normal form F = F1 ∧ F2 ∧ ... ∧ Fn , where

each Fi is a clause (i.e. disjunctions of literals), and the desired conclusion

G, to show G is a logical consequence of F , follow these steps:

1. negate G and add it to the list of clauses (make it into CNF if necessary):

F1, F2, ..., Fn,¬G

2. choose two clauses that have exactly one pair of literals that are
complementary, e.g.:

Fn : ¬P ∨ Q ∨ R and Fm : S ∨ P

3. Produce a new clause by deleting the complimentary pair and producing a
new formula, e.g.:

Q ∨ R ∨ S

4. repeat until the new clause generated is False

This assumes that the premises are consistent.
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Resolution: An Example

A (1)

B (2)

D (3)

¬A ∨ ¬B ∨ C (4)

¬C ∨ ¬D ∨ E (5)

Given the above, we want to prove that E is true. We simply add the

negation of the desired conclusion, and try to draw a contradiction:

¬E (6)
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Resolution: Solution

Given

A (1)

B (2)

D (3)

¬A ∨ ¬B ∨ C (4)

¬C ∨ ¬D ∨ E (5)

¬E (6)

⇒

Resolution

(1,4) ¬B ∨ C (7)

(2,7) C (8)

(5,6) ¬C ∨ ¬D (9)

(8,9) ¬D (10)

(3,10) False (11)
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Resolution: Why Does It Work

The goal of resolution is to show that G is a logical consequence of

F1 ∧ ... ∧ Fn is valid. This is equivalent to showing that

F1 ∧ ... ∧ Fn ∧ ¬G is inconsistent.

Note that if H is a logical consequence of F1 ∧ ... ∧ Fn, then

F1 ∧ ... ∧ Fn = F1 ∧ ... ∧ Fn ∧H :

When F1 ∧ ... ∧ Fn is

1. True : then H must also be true.

2. False : both sides are false, thus H does not matter.

Thus, we can add any logical consequence of F1 ∧ ... ∧ Fn or of

any subset of the Fi ’s without changing the value of the result. Recall

that we added newly derived formulas to the list in the previous slide.
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What Resolution Is Not

If C1 ∧ C2 → H

• then C1 ∧ C2 ∧H = C1 ∧ C2

• but not C1 ∧ C2 = H

In other words,

(C1 ∧ C2 → H)→ ((C1 ∧ C2 ∧H)↔ (C1 ∧ C2))

(C1 ∧ C2 → H) 9 ((C1 ∧ C2)↔ H)

Exercise: Verify the above with

C1 = (A ∨B), C2 = (¬B ∨ C), and H = (A ∨ C).
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Resolution Algorithm

1. Convert premises F1 ∧ ... ∧ Fn into CNF, and make a list of

resulting clauses.

2. Negate the conclusion, convert to CNF, and add to the clause list.

3. Resolution Step: pick two clauses from the list with exactly one

complementary literal; any other literals if they appear on both

clauses must have the same sign. Form a new clause by

disjunction w/o the complementary literals, and add to the list.

(P ∨ Ci), (¬P ∨ Cj)| {z }
Fi and Fj

⇒ (Ci ∨ Cj)| {z }
Add to list

4. If False was added to the list of clauses, in step 3, stop; theorem

proved. Otherwise, go to step 3.
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Limitation of Propositional Logic

Limited expressive power:

• P : All men are mortal

• Q: Socrates is a man

• R: Socrates is mortal

Can you prove (P ∧Q)→ R using propositional logic?
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Exercise 6.6, p. 181

Given:

If the unicorn is mythical, then it is immortal(M → I), but if

it is not mythical, then it is a mortal mammal

(¬M → (¬I ∧ L)). If the unicorn is either immortal or a

mammal, then it is horned ((I ∨ L)→ H). The unicorn is

magical if it is horned (H → G).

Prove or disprove:

1. The unicorn is mythical (M ).

2. The unicorn is magical (G).

3. The unicorn is horned (H).←− Let’s prove this.
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Exercise: Solution Using Resolution

1. ¬M ∨ I

2. (a) M ∨ ¬I , (b) M ∨ L

3. (a) ¬I ∨H , (b) ¬L ∨H

4. ¬H ∨G

5. ¬H (negated conclusion)

3a,5 ¬I (6)

3b,5 ¬L (7)

2b,7 M (8)

1,6 ¬M (9)

8,9 False (10)
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Is The Unicorn Horned?

Given:

1. M → I

2. ¬M → (¬I ∧ L)

3. (I ∨ L) → H

4. H → G

Prove: H
1, ¬I → ¬M (5)

2 and 5, ¬I → ¬M → (¬I ∧ L) (6)

6, I ∨ (¬I ∧ L) (7)

7, (I ∨ ¬I) ∧ (I ∨ L) = True ∧ (I ∨ L) = (I ∨ L) (8)

8 and 3, (I ∨ L) → H (9)
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Limitation of Propositional Logic

Limited expressive power:

• P : All men are mortal

• Q: Socrates is a man

• R: Socrates is mortal

Can you prove (P ∧Q)→ R using propositional logic?
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Key Points

• Normal forms: definitions, know how to convert, applying basic

laws and inference rules

• Theorem proving: basic approaches. forward and backward

chaining concept, and resolution.

• know how to do resolution in propositional logic

• limitation of propositional logic
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Predicate Calculus (First-Order

Logic)

Treatment of predicate calculus in this lecture closely follows: Chang, C.-L., and

Lee, R. C.-T., ”Symbolic Logic and Mechanical Theorem Proving”, Academic

Press, London, 1973. Substitution notation follows Russell & Norvig.
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Predicate Calculus (First-Order Logic)

Propositional logic does not allow us to perform any reasoning based

on the use of general rules, so its usefulness is limited. Predicate

Calculus generalizes Propositional Calculus to allow the expression

and use of general rules.

• objects

• relations

• properties

• functions: similar to relations but returns only one value
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New Concepts Introduced in Predicate Calculus

• terms : objects in the domain, and how things get transformed

(functions)

• predicates : properties of objects (certain properties are True or

False)

• quantifiers : express properties of large set of objects without

enumerating
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Terms in Predicate Calculus

A Term is:

• constant: a, b, c, ...

• variable: x, y, x, ...

• f(t1, ..., tn), where f is a function symbol and t1, t2, ..., tn

are terms.

Terms refer to objects in a domain.
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Predicate Calculus Constructs

• Variables: x, y, z, ...

• Constants: John, Mary, 3

• Functions: f(x), g(y), h(z), father(John), ...

- maps term(s) to a term

• Predicates:

P (x, y), GREATER(x, 3), LOV E(father(John), John)

- function whose value is True or False

• Quantifiers: ∀ (for all), ∃ (there exists)

50

Mortality Revisited

Propositional logic

• P : All men are mortal

• Q: Socrates is a man

• R: Socrates is mortal

First-order logic

• P : All men are mortal ∀xMAN(x)→MORTAL(x)

• Q: Socrates is a man MAN(Socrates)

• R: Socrates is mortal MORTAL(Socrates)
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A Formal Definition

Well Formed Formula (or Sentence):

WFF = Atomic-Formula |WFF Connective WFF

| Quantifier Variable, WFF | ¬WFF | ( WFF )

Atomic-Formula = Predicate( Term, ... ) | Term = Term

Term = Function(Term, ... ) | Constant | Variable

Connective =→ | ∧ | ∨ | ↔
Quantifier = ∀ | ∃
Constant = A |X1 | John | ...
Variable = a | x | s | ...
Predicate = Before | HasColor | Raining | ...
Function = Mother | LocationOf | ...
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Functions vs. Predicates

• Functions: returns a single object (term); relations

· FatherOf(GeorgeJr) = GeorgeSr,

· DistanceBetween(MilkyWay, Andromeda) =

2-million light years, ...

• Predicates: returns a truth value; properties

· IsFather(GeorgeSr, GeorgeJr) = True

· HeavierThan(Earth, Sun) = False

Must disambiguate: Brother(x, y) could be

· AreBrothers(x, y) :predicate, or

· BrotherOf(x, y) :function, i.e. a common brother of x and y.
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Quantifiers

∀var wff

• Universal quantifier ∀:

· Every Skunk is Stinky : translates into

∀x Skunk(x)→ Stinky(x)

· note that the main connective is→
∃var, wff

• Existential quantifier ∃:

· There exists a Cat that is White : translates into

∃x Cat(x) ∧White(x)

· Same as: Some Cat is White

· note that the main connective is ∧
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Common Mistakes With Quantifiers

All skunks are stinky:

• Correct: ∀x Skunk(x)→ Stinky(x)

• Wrong: ∀x Skunk(x) ∧ Stinky(x)

· this means: everything is a skunk and it is stinky.

Some cats are white:

• Correct: ∃x Cat(x) ∧White(x)

• Wrong: ∃x Cat(x)→White(x)

· this is true if there is something that is not a cat!
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Properties of Quantifiers

• ∀x ∀y = ∀y ∀x
• ∃x ∃y = ∃y ∃x
• ∀x ∃y 6= ∃y ∀x
∃x ∀y Loves(x, y) vs.

∀y ∃x Loves(x, y)

• quantifiers can be translated using each other:

∀x Likes(x, Coffee) ¬∃x ¬Likes(x, Coffee)

∃x Likes(x, Broccoli) ¬∀x ¬Likes(x, Broccoli)
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Semantics of Predicate Calculus

Formulas are true with respect to a model and and interpretation.

Models contains objects and relations:

• objects: constants

• relations: predicates

• functional relations: functions

An atomic formula Predicate(term1, term2, ..., termn) is true

iff the objects referred to by term1, term2, ..., termn are in the

relation referred to by Predicate.
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Example: Howling Hounds

1. All hounds howl at night.

2. Anyone who has any cats will not have any mice.

3. Light sleepers do not have anything which howls at night.

4. John has either a cat or a hound.

5. Prove: If John is a light sleeper, then John does not have any

mice.
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Example: Howling Hounds (cont’d)

1. ∀x (HOUND(x)→ HOWL(x))

2. ∀x∀y((HAV E(x, y) ∧ CAT (y))→
¬∃z(HAV E(x, z) ∧MOUSE(z)))

3. ∀x (LS(x)→ ¬∃y(HAV E(x, y) ∧HOWL(y)))

4. ∃x (HAV E(John, x) ∧ (CAT (x) ∨HOUND(x)))

5. Prove:

LS(John)→ ¬∃x (HAV E(John, x) ∧Mouse(x))
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Canonical Forms of Predicate Calculus

1. Prenex Normal Form: arranged all quantifiers at the front of the

formula : use De Morgan’s rules (p. 193)

2. Convert the non-quantifier part (called the matrix) into

Conjunctive Normal Form

3. Skolemization: eliminate existential quantifiers by introducing

Skolem constants or Skolem functions.

Result:

∀x1∀x2...∀xn(CNF)
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Key Points

• predicate calculus basics

• quantifier properties, and common mistakes

• translating English into predicate calculus

• canonical forms for predicate calculus: basics
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Overview

• Representing relations in predicate calculus

• Interpretation in predicate calculus

• prenex normal form

• skolemization

• inference
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Domain

• A Domain is a section of the world about which we wish to

express some knowledge.

• The totality of the objects in the part of that world consists the

domain.

• Basically, the set of all constants (i.e. objects) makes up a

domain: John, Bill, Bob, ...

Example: everyone on Earth, everyone in Texas, everyone in College

Station, every computer in the Bright Bldg., etc.
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Example: Kinship Domain

∀m∀c Mother(c) = m↔ (Female(m) ∧ Parent(m, c))

∀w∀h Husband(h, w)↔Male(h) ∧ Spouse(h, w)

∀p∀c Parent(p, c)↔ Child(c, p)

∀g∀c Grandparent(g, c)↔ ∃p(Parent(g, p)∧Parent(p, c))

∀x∀y Sibling(x, y)↔ (x 6= y∧∃p(Parent(p, x)∧Parent(p, y))

Exercise: 7.6, p. 214 – try it out
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Interpretation in Predicate Calculus

An interpretation of a formula F in first-order logic consists of a

nonempty domain D, and an assignment of values to each constant,

function, and predicate occurring in F as follows:

1. constant:

assign an element of D (e.g. an integer)

2. function with n arguments:

assign a mapping from Dn to D

3. predicate with n arguments:

assign a mapping from Dn to {True,False}
Dn = {(x1, ..., xn)|xi ∈ D for i = 1, ..., n} Similar to

assigning truth values in propositional logic.
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Evaluation of a Formula Given an Interpretation

1. if F and G have been evaluated, evaluate

¬F, (F ∧G), (F ∨G), (F → G), and (F ↔ G)

2. ∀x G is evaluated to True if G evaluates to True for every x

in D; otherwise, G evaluates to False

3. ∃x G is evaluated to True if G evaluates to True for any x in

D; otherwise, G evaluates to False
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Side Note: Bound vs. Free Variables

• Scope of a quantifier:

the range (parentheses) over which the associated variable takes

effect

• Bound variable:

an occurrence of a variable in a formula is bound iff the

occurrence is within the scope of a quantifier employing the

variable.

• Free variable:

an occurrence of a variable in a formula is free iff the occurrence

is not bound.

Bound: ∀x∀yP (x, y); Free: ∀x P (x, y);

Both Free and Bound: (∀x P (x, y)) ∧ (∀y Q(y))
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Example: Interpretation and Evaluation

Given the interpretation:

• Domain: D = {Bob, Carol, Ted, Alice}
• Predicates: Woman(Carol), Woman(Alice)

Man(Bob), Man(Ted)

Loves(Bob, Carol), Loves(Ted, Alice), Loves(Carol, Ted)

• Functions:

Brother(Bob) = Ted, Boss(Alice) = Carol

Evaluate:

∀x (Man(x)→ ∃y(Woman(y) ∧ Loves(x, y)))
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Consistency, Satisfiability, and Validity

A formula G is

• consistent (satisfiable) iff there exists an interpretation I such

that G evaluates to True in I . In this case, I is a model of G

and I satisfies G.

• inconsistent (unsatisfiable) iff there is no interpretation that

satisfies G.

• valid iff every interpretation of G satisfies G.

• invalid iff there is at least one interpretation I of G such that G

evaluates to False under I .
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Difficulty: Many Domains Are Infinite

Algebra, etc.

• There are an infinite number of interpretations of a formula.

• In general, none of the properties in the previous slide are

decidable in general for formulas in predicate calculus.
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Standard Forms of Predicate Calculus

1. Prenex Normal Form: arranged all quantifiers at the front of the

formula : use De Morgan’s rules (p. 193)

2. Convert the non-quantifier part (called the matrix) into

Conjunctive Normal Form

3. Skolemization: eliminate existential quantifiers by introducing

Skolem constants or Skolem functions.

Result:

∀x1∀x2...∀xn(CNF)
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Prenex Normal Form

A formula F in first-order logic is in Prenex Normal Form iff the

formula is in the form:

Q1x1 Q2x2 ...Qnxn| {z }
Prefix

(M)|{z}
Matrix

where Qi is ∀ or ∃, and M contains no quantifiers.
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Conjunctive Normal Form

Analogous to propositional logic.

• a list of clauses (disjunction of literals)

• r-literal clause, unit clause, and empty clause.

73

Quantifier Equivalences: Converting to Prenex

Normal Form

Equivalence formulas (Q = ∀ or ∃):

• (Qx F (x)) ∨G = Qx (F (x) ∨G)

(Qx F (x)) ∧G = Qx (F (x) ∧G)

• ¬(∀x F (x)) = ∃x (¬F (x))¬(∃x F (x)) = ∀x (¬F (x))

• (∀x F (x)) ∧ (∀x G(x)) = ∀x (F (x) ∧G(x))

(∃x F (x)) ∨ (∃x G(x)) = ∃x (F (x) ∨G(x))

• (Q1x F (x)) ∨ (Q2x H(x)) = Q1x Q2z (F (x) ∨H(z))

(Q1x F (x)) ∧ (Q2x H(x)) = Q1x Q2z (F (x) ∧H(z))
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Quantifier Equivalences
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x where F(x) is true

x where G(x) is true

G(x)
F(x)

G(x)
F(x)

G(x)
F(x)

Equivalence formulas (Q = ∀ or ∃):

• (∀x F (x))| {z }∧ (∀x G(x))| {z } = ∀x (F (x) ∧G(x))| {z }
• (∃x F (x))| {z }∨ (∃x G(x))| {z } = ∃x (F (x) ∨G(x))| {z }

What about (∀x F (x)) ∨ (∀x G(x)) and ∀x (F (x) ∨G(x))?
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Exercise: Conversion to Prenex Normal Form

Convert (∀x P (x))→ (∃y Q(y)) to Prenex Normal Form:

(∀x P (x))→ (∃y Q(y)) = ¬(∀x P (x)) ∨ (∃y Q(y))

= (∃x ¬P (x)) ∨ (∃y Q(y))

= ∃x ∃y (¬P (x) ∨Q(y))

More exercise:

∀x ∀y ((∃z P (x, z) ∧ P (y, z))→ (∃u Q(x, y, u)))
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Example Proof: Motivating Skolemization

Given:

1. No used-car dealer buys a used car for his family.

∀x (U(x)→ ¬B(x))

2. Some people who buy used cars are absolutely dishonest.

∃x (B(x) ∧D(x))

3. Prove: Some absolutely dishonest people are not used-car

dealers.

∃x (D(x) ∧ ¬U(x))
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Proof

∀x (U(x) → ¬B(x)) (2)

∃x (B(x) ∧D(x)) (3)

Conclusion: ∃x (D(x) ∧ ¬U(x)) (4)

1. Assume (1) and (2) are true in domain D under interpretation I . Because

of (2), there must be an x in D, say ”a”, such that B(a) ∧D(a) is

True under I .

2. Thus, B(a) is T and¬B(a) is F .

3. (1) is ∀x(¬U(x) ∨ ¬B(x)). ¬U(x) must be T because¬B(x)

is F .

4. Because of (2), D(a) is also true, thus D(a) ∧ ¬U(a) is T , and ”a”

is one example where (3) is T in domain D.
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Skolemization

Eliminate existential quantifiers through replacement of bound variables with

constants or functions.

• Assume the formula is in Prenex Normal Form (Q = ∀ or ∃):

F = Q1x1Q2x2....Qnxn(M)

• In a general case, where Qrxr is ∃xr , delete Qrxr and

replace every xr in F by f(xs1 , xs2 , ..., xsm ), where

xs1 , xs2 , ..., xsm are all the universally quantified variables

appearing to the left of xr , and f is a new function symbol

(Skolem function) not appearing in F .

• If there is no universal quantifier ∀ to the left of the existential

quantifier ∃ in question, remove ∃ and replace the variable

associated with it with a constant a (called a Skolem constant).

• Observation: constant is like a function with no arguments.
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Skolemization Example

• Initial formula:

∃x ∀y ∀z ∃u ∀v ∃wP (x, y, z, u, v, w)

• ∃x← a = h()

• ∃u← f(y, z)

• ∃w ← g(y, z, v)

• Result of Skolemization:

∀y ∀z ∀v P (a, y, z, f(y, z), v, g(y, z, v))
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Quantifier Order and Skolemization

E A Ex y Loves(x,y) y x Loves(x,y)A

Different quantifier order results in different Skolemization:

• ∃x ∀y Loves(x, y)

· ∀y Loves(a, y)

• ∀y ∃x Loves(x, y)

· ∀y Loves(f(y), y)

a is a new Skolem constant, and f(·) is a new Skolem function.
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Standard Form: A Summary

We followed these three steps to convert first-order logic formulas into

a standard form amenable to algorithmic verification:

1. Transform formula into Prenex Normal Form.

2. Transform the matrix into Conjunctive Normal Form.

3. Eliminate existential quantifiers through Skolemization.

⇒ A set of clauses in CNF in which all variables are universally

quantified
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Example Proof: Used-Car Revisited

Given:

∀x (U(x)→ ¬B(x)) (1)

∃x (B(x) ∧D(x)) (2)

Conclusion: ∃x (D(x) ∧ ¬U(x)) (3)

Convert to standard form:

¬U(x) ∨ ¬B(x) (1)

B(a) (2a)

D(a) (2b)

¬D(x) ∨ U(x) (3)
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Example Proof: Resolution Steps

Given the clauses:

¬U(x) ∨ ¬B(x) (1)

B(a) (2a)

D(a) (2b)

¬D(x) ∨ U(x) (3)

Resolution:

1, 2a: ¬U(a) (4)

3,4: ¬D(a) (5)

2b,5: False (6)

Note: unification is used above, which will be discussed next time.
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Note: Resolving

1. ∀x (¬U(x) ∨ ¬B(x))| {z }
clause 1

∧ B(a)| {z }
clause 2

• because clause 1 is T , and B(a) is T (clause 2),

¬U(a) ∨ ¬B(a) must be T .

• from this and B(a), we can derive ¬U(a).

2. ∀x ¬D(x)| {z }
clause 5

∧ D(a)| {z }
clause 2b

• it only takes one counter example (here, a) to refute the formula

above.
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Key Points

• Representing relations in predicate calculus: domains,

• Interpretation in predicate calculus: what is an interpretation and

how it related to a domain. When is an interpretation true or false.

• prenex normal form: why it is useful, how to convert to, the basic

rules used in conversion

• skolemization: why it is useful, how to do it

• inference: basics of resolution – first step is converting to a

standard form.
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Overview

• Substitution

• Unification algorithm

• Unification in LISP

• Factors

• Resolvents
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Resolution for Predicate Calculus

The resolution step is valid for predicate calculus, when two clauses

contain complementary predicates. For example, clause C1 may

contain predicate P (·) and clause C2 may contain predicate ¬P (·).

C1 : P (x) ∨Q(x)

C2 : ¬P (f(x)) ∨R(x)

We could substitute f(a) for x in C1 and a for x in C2, and then

resolve to get

C3 : Q(f(a)) ∨R(a)

More generally, we could substitute f(x)for x in C1 and resolve to get

C3 : Q(f(x)) ∨R(x)
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Remaining Issues

Theorem proving steps:

1. Conversion of natural language sentences into first-order logic

formulas

2. Conversion to standard form

3. Resolution

Remaining issue: how to substitute variables to resolve two clauses

and generate a new clause⇒ do substitution and unification.
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Ground Term

A term (constant, variable, or function of terms) is a ground term if no

variable appears in the term.

• ground constant

• ground literal

• ground clause

• etc.
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Substitution

• A substitution is a finite set of the form

{v1/t1, ..., vn/tn}
where each vi is a variable, each ti is a term (constant, variable,

or function of terms), and no two vi are identical.

• A substitution in which each ti is a ground term is called ground

substitution.

• The empty substitution ε = {} contains no elements.

Why is substitution important: assists in resolving two clauses by

making the two clauses with different variables compatible.
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Substitution Applied to a Formula

• Let θ = {v1/t1, ..., vn/tn} be a substitution and E be an

expression. Then Eθ is an expression obtained from E by

replacing simultaneously each occurrence of variable vi

(1 ≤ i ≤ n) in E by the term ti.

• Eθ is called an instance of E.

In the textbook, Eθ is denoted SUBST (θ, E).
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Substitution Examples

• θ = {x/a, y/f(b), z/c}, E = P (x, y, z)

· Eθ = P (a, f(b), c)

• θ = {x/f(x), y/x}, E = P (x, y)

· Eθ = P (f(x), x)

• θ = {x/Socrates}, E = ¬MAN(x) ∨MORTAL(x)

· Eθ = ¬MAN(Socrates) ∨MORTAL(Socrates)
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Composition of Substitutions

Let θ = {x1/t1, ..., xn/tn} and λ = {y1/u1, ..., ym/um} be

substitutions. Then the composition of θ and λ, denoted θ ◦ λ is the

substitution obtained from the set

{x1/t1λ, ..., xn/tnλ, y1/u1, ..., ym/um}

by deleting any element xj/tjλ such that tjλ = xj (e.g. xk/xk is

meaningless) and any element yi/ui such that yi ∈ {x1, ..., xn}
(because yi is already covered by θ).
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Examples: Composition of Substitution

Given

θ = {x1/t1, x2/t2} = {x/f(y), y/z}
λ = {y1/u1, y2/u2, y3/u3} = {x/a, y/b, z/y}

θ ◦ λ = {x1/t1λ, x2/t2λ, y1/u1, y2/u2, y3/u3}
= {x/f(y)λ, y/zλ| {z }

θ

, x/a, y/b, z/y| {z }
λ

}

= {x/f(b), y/y|{z}
identity

, x/a, y/b| {z }
appeared in θ

, z/y}

= {x/f(b), z/y}
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Unification

• A substitution θ is called a unifier for a set {E1, ..., Ek} iff

E1θ = E2θ = ... = Ekθ.

• The set {E1, ..., Ek} is said to be unifiable if there is a unifier

for it.

• A unifier σ for a set {E1, ..., Ek} of expressions is a Most

General Unifier iff for each unifier θ for the set there is a

substitution λ such that θ = σ ◦ λ.

• A Most General Unifier will avoid unnecessary substitution(s).
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Examples: Unification

P (x, g(x)) will unify with:

Expression Necessary Substitution

P (x, y) {y/g(x)}
P (z, g(z)) {z/x} or {x/z}
P (Socrates, g(Socrates)) {x/Socrates}
P (x, g(y)) {x/y} or {y/x}
P (g(y), z) {x/g(y), z/g(g(y))}

but not with P (Socrates, f(Socrates)) or P (g(y), y)
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Disagreement Set

Let W be a nonempty set of expressions {E1, ..., En}. The

disagreement set D of W is obtained by locating the first symbol

(counting from the left) at which not all the expressions in W have

exactly the same symbol, and then extracting from each expression Ei

in W the subexpression that begins with the symbol occupying that

position.

Example:

W = {P (x, y, a, f(x)),

P (x, y, a, g(x)),

P (x, y, a, z)}
Symbols to the right of the vertical bar differ.

D = {f(x), g(x), z}
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Disagreement Set: More Examples

Examples:

1. W = {P (a), P (x)} D = {a, x}
2.

W = {P (x, f(y, a)),

P (x, a),

P (x, g(h(k(x))))}

D = {f(y, a), a, g(h(k(x)))}
3.

W = {P (x, f(g( h(y)))),

P (x, f(g( z)))}

D = {h(y), z}
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Unification Algorithm

Let W = {E1, ..., En} be the set of expressions to be unified.

1. If necessary, rename variables so that no pair (Ei, Ej) from different

clauses has any variables in common.

2. Set k = 0, Wk = W, σk = ε (empty substitution).

3. If Wk is a singleton (contains only one expr), stop; σk is a most general

unifier for W . Otherwise, let Dk be the disagreement set for Wk .

4. If there exist elements vk and tk in Dk such that vk is a variable that

does not occur in term tk , go to step 5. Otherwise, stop; W is not

unifiable.

5. Let σk+1 = σk ◦ {vk/tk} and Wk+1 = Wk{vk/tk}. (Note

that Wk+1 = Wkσk+1)

6. Set k = k + 1 and go to step 3.
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Unification Theorem

If W is a finite nonempty unifiable set of expressions, then the

unification algorithm will always terminate at step 3, and the last σk is

a most general unifier for W (i.e. not unnecessary substitutions).

The algorithm must terminate because each pass through the loop

reduces the number of variables by 1, and there are only finitely many

of them.
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Unification Example

P (x, f(x), z) vs.

P (g(y), f(g(a)), y):

1. {x/g(y)}:
P (g(y), f(g(y)), z)

P (g(y), f(g(a)), y)

2. {y/a}:
P (g(a), f(g(a)), z)

P (g(a), f(g(a)), a)

3. {z/a}:
P (g(a), f(g(a)), a)

Unifier: {x/g(a), y/a, z/a}
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Representation of Predicates and Terms in LISP

• Constants: a = (A), Socrates = (SOCRATES)

• Variables: x = X, y = Y

• Functions: f(x)=(F X), f(a,y,z)=(F (A) Y Z)

• Predicates: P(x)=(P X), P(x,b,f(z))=(P X (B) (F Z))

Note how the representation of the constants can come in handy.
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SUBLIS : substitution in LISP

(sublis <list-of-alist> <expr>): simultaneous
substitution

• alist, or association list: (A . B), which is the same as (cons ’A

’B) (note that B is not a list but an atom in this case).

• <list-of-alist>: a list of (<pattern> <replace>) pairs.

• <expr>: the expression to be worked on.

• Replace every occurrence of <pattern> in <expr> with

<replace>.

Another useful function: (subst <repl> <pattern> <expr>)
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SUBLIS Examples

Basically, replace (car alist) with (cdr alist) of each

element in the <list-of-alist>:

>(sublis ’((x . (20))) ’(* x 1))

(* (20) 1)

>(sublis ’((x 20)) ’(* x 1))

(* (20) 1)

>(sublis ’((x . 20)) ’(* x 1))

(* 20 1)

>(sublis ’((x . 20) (y . 10)) ’(* x (/ 5 y)))

(* 20 (/ 5 10))

105

Unification in LISP

(defun unify (u v)

(let ((*u* (copy-tree u))

(*v* (copy-tree v)) *subs*)

(declare (special *u* *v* *subs*))

(if (unifyb *u* *v*) (or *subs* (list (cons t t)))) ))

(defun unifyb (u v)

(cond ((eq u v))

((symbolp u) (varunify v u))

((symbolp v) (varunify u v))

((and (consp u) (consp v)

(eq (car u) (car v))

(eql (length (cdr u))

(length (cdr v))))

(every #’unifyb (cdr u) (cdr v)) )) )
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Unification in LISP (cont’d) a

(defun varunify (term var)

(declare (special *u* *v* *subs*))

(unless (occurs var term)

(dolist (pair *subs*)

(setf (cdr pair)

(subst term var (cdr pair))))

(nsubst term var *u*)

(nsubst term var *v*)

(push (cons var term) *subs*)))

a
Code in this and the previous page by Gordon Novak, http://www.cs.utexas.edu/users/novak. Also down-

loadable at http://www.cs.tamu.edu/faculty/choe/courses/02spring/src/sunify.lsp
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UNIFY : examples

(unify ’(p x) ’(p (a)))

(unify ’(p (a)) ’(p x))

(unify ’(p x (g x) (g (b))) ’(p (f y) z y))

(unify ’(p (g x) (h w) w) ’(p y (h y) (g (a))))

(unify ’(p (f x) (g (f (a))) x) ’(p y (g y) (b)))

(unify ’(p x) ’(p (a) (b)))

(unify ’(p x (f x)) ’(p (f y) y))
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Resolution in Predicate Calculus

• Factors

• Binary resolvent

• Properties of resolution
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Factor of a Clause

Definition: If two or more literals of a clause C (with the same sign)

have a most general unifier σ, then Cσ is called a Factor of C . If Cσ

is a unit clause, it is called a Unit Factor of C .

Example: C = P (x) ∨ P (f(y)) ∨ ¬Q(x).

• The first two literals have a unifier σ = {x/f(y)}, so C has a

factor Cσ = P (f(y)) ∨ ¬Q(f(y)).

Note: Factors of a clause are much succinct and when two clauses

C1 and C2 cannot be resolved directly, their factors (let’s call them

C′
1 and C′

2 can be resolved.
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Resolving Two Clauses

Definition: Let C1 and C2 be two clauses (called parent clauses) with

no variables in common, and with complementary literals L1 and L2

such that L1 and ¬L2 have a most general unifier σ. Then the clause

(C1σ − L1σ) ∪ (C2σ − L2σ)

is called a binary resolvent of C1 and C2. The literals L1 and L2

are called the literals resolved upon.

Note: A clause can be treated as a set of literals.

{P (x)} ∪ {Q(x)} = {P (x), Q(x)} = P (x) ∨Q(x)

Example: Resolve the following (hint: σ = {x/a})
C1 = P (x) ∨Q(x) and C2 = ¬P (a) ∨R(y).
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Resolvent

Definition: A resolvent of parent clauses C1 and C2 is one of the

following binary resolvents:

1. a binary resolvent of C1 and C2

2. a binary resolvent of C1 and a factor of C2

3. a binary resolvent of a factor of C1 and C2

4. a binary resolvent of a factor of C1 and a factor of C2

Example: resolve the two clauses

1. C1 = P (x) ∨ P (f(y)) ∨R(g(y)) and

2. C2 = ¬P (f(g(a))) ∨Q(b).

(hint: resolve the factor of C1 and clause C2)
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Property of Resolution for First-Order Logic

• Complete: If a set of clauses S is unsatisfiable, resolution will

eventually derive False.

· Everything that is true can be proved (eventually).

• Sound: If F is derived by resolution, then the original set of

clauses S is unsatisfiable.

· Everything that is proved is true.
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Weakness of Resolution

Basically, resolution tries to derive

Axioms ∧ ¬ Theorem = F

• Is there a F in the axioms? If there is, the whole formula will

always be unsatisfiable no matter what.

• Can we tell whether axioms alone can derive F ? (generally, this

is not the case)
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Key Points

• substitution and unification: why are these necessary and how to

do them.

• unification algorithm

• factors : definition, and how to derive, why factors are important

• resolvent : definition, and how to derive
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Overview

• Resolvents

• Resolution in first order logic: example

• Theorem proving strategies

• Application of theorem proving: question answering
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Resolving Two Clauses: Revisited

Resolving two clauses C1 and C2 with the most general unifier σ:

(C1σ − L1σ) ∪ (C2σ − L2σ)

This is basically:

1. Find the most general unifier σ.

2. Apply σ to both C1 and C2

3. Remove the complimentary literal from C1 and C2.
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Resolving Two Clauses: Example Revisited

Example: Resolve the following (hint: σ = {x/a})

C1 = P (x)| {z }
L1

∨Q(x) and C2 = ¬P (a)| {z }
L2

∨R(y)

C1 = P (x) ∨Q(x) C2 = ¬P (a) ∨ R(y)

| |
σ = {x/a} σ = {x/a}

↓ ↓
C1σ = P (a) ∨Q(a) C2σ = ¬P (a) ∨ R(y)

| |
remove L1σ = P (a) remove L2σ = ¬P (a)

↓ ↓
(C1σ − L1σ) = Q(a) (C2σ − L2σ) = R(y)
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Resolvent: A Full Example

Example: resolve the two clauses

1. C1 = P (x) ∨ P (f(y)) ∨ R(g(y)) and

2. C2 = ¬P (f(g(a))) ∨Q(b).

1. Get the factor of C1 :

C1{x/f(y)} = P (f(y)) ∨ R(g(y))

2. Resolve factor of C1 and C2 :

P (f(y)) ∨ R(g(y)) vs.¬P (f(g(a))) ∨Q(b)

3. σ = {y/g(a)}:

P (f(g(a)))| {z }
remove

∨R(g(g(a))) vs. ¬P (f(g(a)))| {z }
remove

∨Q(b)

4. Result:

R(g(g(a))) ∨Q(b)
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Example Proof Using Resolution a

Given: (1) The customs officials searched everyone who entered the

country who was not a VIP. (2) Some of the drug dealers entered the

country, and they were only searched by drug dealers. (3) No drug

dealer was a VIP.

Prove: (4) Some of the customs officials were drug dealers.

aChang & Lee, Example 5.22
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Example: Predicates

1. C(x): x is a customs official

2. E(x): x entered the country

3. V (x): x is a VIP

4. S(x, y): x was searched by y

5. D(x): x is a drug dealer
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Example: English to First Order Logic

(1) The customs officials searched everyone who entered the country who was

not a VIP. (2) Some of the drug dealers entered the country, and they were only

searched by drug dealers. (3) No drug dealer was a VIP. (4) Some of the

customs officials were drug dealers.

1. ∀x((E(x) ∧ ¬V (x)) → ∃y(S(x, y) ∧ C(y)))

2. ∃x(E(x) ∧D(x) ∧ ∀y(S(x, y) → D(y)))

3. ∀x(D(x) → ¬V (x))

4. ∃x(D(x) ∧ C(x))
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Example: Standard Form (I)

(1) ∀x((E(x) ∧ ¬V (x)) → ∃y(S(x, y) ∧ C(y)))

{rm →} = ∀x(¬(E(x) ∧ ¬V (x)) ∨ ∃y(S(x, y) ∧ C(y)))

{prenex} = ∀x∃y(¬E(x) ∨ V (x) ∨ (S(x, y) ∧ C(y)))

{skol} = ∀x(¬E(x) ∨ V (x) ∨ (S(x, f(x)) ∧ C(f(x))))

{add()} = ∀x((¬E(x) ∨ V (x)) ∨ (S(x, f(x)) ∧ C(f(x))))

{dist} = ∀x((¬E(x) ∨ V (x) ∨ S(x, f(x))| {z }
∧ (¬E(x) ∨ V (x) ∨ C(f(x)))| {z })

Clauses:

(1a)¬E(x) ∨ V (x) ∨ S(x, f(x))

(1b)¬E(x) ∨ V (x) ∨ C(f(x))
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Example: Standard Form (II)

(2) ∃x(E(x) ∧D(x) ∧ ∀y(S(x, y) → D(y)))

{rm →} = ∃x(E(x) ∧D(x) ∧ ∀y(¬S(x, y) ∨D(y)))

{prenex} = ∃x∀y(E(x) ∧D(x) ∧ (¬S(x, y) ∨D(y)))

{skol} = ∀y(E(a)| {z }∧D(a)| {z }∧ (¬S(a, y) ∨D(y))| {z })
Clauses:

(2a) E(a)

(2b) D(a)

(2c)¬S(a, y) ∨D(y)

124



Example: Standard Form (III)

(3) ∀x(D(x) → ¬V (x))

{rm →} = ∀x(¬D(x) ∨ ¬V (x))

Clause:

(3)¬D(x) ∨ ¬V (x)

(4) ∃x(D(x) ∧ C(x))

{negate} ⇒ ¬(∃x(D(x) ∧ C(x)))

{prenex} = ∀x¬(D(x) ∧ C(x)))

{CNF} = ∀x(¬D(x) ∨ ¬C(x))

Clause:

(4)¬D(x) ∨ ¬C(x)
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Example: Clauses

(1a)¬E(x) ∨ V (x) ∨ S(x, f(x))

(1b)¬E(x) ∨ V (x) ∨ C(f(x))

(2a) E(a)

(2b) D(a)

(2c)¬S(a, y) ∨D(y)

(3)¬D(x) ∨ ¬V (x)

(4)¬D(x) ∨ ¬C(x)

Note: The input to your theorem prover will be in a standard form like the above.

Exercise 1: rewrite the above in LISP representation.

Exercise 2: use resolution to derive F .
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Basic Theorem Proving Algorithm

Level saturation resolution method (or two-pointer method)

Generate all possible resolvents:

• Generate sequences of clauses S0, S1, S2, ..., where

S0 = S (original set of clauses)

Sn = { all possible resolvents of clauses

C1 ∈ (S0 ∪ ...Sn−1) and C2 ∈ Sn−1 }
• This is basically a breadth first search method, and it can be

extremely inefficient except for small problems.

• The problem is that irrelevant derivations are made: in

generating an n-step proof, we also generate all possible

derivations of n-1 steps.
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Deletion Strategy

To reduce the huge number of generated clauses, we would like to

delete clauses whenever possible. We can delete:

1. Any tautology, e.g. P (a) ∨ ¬P (a) ∨Q(x).

2. Any clause which duplicates an existing clause.

3. Any clause which is subsumed by an existing clause.

A clause C subsumes a clause D iff there is a substitution σ such

that Cσ ⊆ D (recall that a clause can be represented as a set of

literals). D is called a subsumed clause.

Deletion strategy will be complete if it is used with certain resolution

algorithms (such as level saturation).
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Subsumed Clause: Example (I)

Example:

• C = P (x)

• D = P (a) ∨Q(a)

• If σ = {x/a}, then

Cσ = P (a) = {P (a)}
⊆ {P (a), Q(a)} = P (a) ∨Q(a) = D.

• Since Cσ ⊆ Q, C subsumes D, and D can be deleted.
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Strategies to Improve Resolution

1. Deletion strategy: remove tautology, duplicates, and subsumed

clauses.

2. Unit preference: resolve with clauses with the fewest literals.

3. Set of support: begin with set T consisting of the clauses from

the negated conclusion. Each resolution step must involve a

member of T , and the result is added to T .

4. Linear resolution (Depth First): Each step must be a resolution

step involving the clause produced by the last step.
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Advantages and Disadvantages of Resolution

• Advantages: (1) Resolution is universally applicable to problems

which can be described in first-order logic. (2) The theorem

proving engine can be decoupled from any particular domain.

• Disadvantage: (1) Resolution is too inefficient to be generally

applicable. (2) This is partly because resolution is purely

syntactic, and it does not consider what the predicates mean. For

this reason, developing a domain-dependent heuristic is

impossible. (3) A contradiction in the axiom set may allow

anything to be proved. (4) It is difficult for a human to understand

proof by resolution prover.
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Application of the Theorem Prover: Question

Answering

• Given a database of facts (ground instances) and axioms, we can

pose questions in predicate calculus and answer them using

resolution.

• Resolution can answer Yes/No answers, but it can be extended to

answer more complex questions such as Who? or What?, etc.

This is called Answer Extraction.
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Question Answering: Example

Example:

1. ∀x∀y∀z((P arent(x, z) ∧ P arent(z, y)) → Grandparent(x, y)

2. ∀x∀y(Mother(x, y) → P arent(x, y))

3. ∀x∀y(F ather(x, y) → P arent(x, y))

4. F ather(Zeus, Ares)

5. Mother(Hera, Ares)

6. F ather(Ares, Harmonia)

Question: ”Who is a grandparent of Harmonia?”

1. ∃x(Grandparent(x, Harmonia))
Negated:¬∃x(Grandparent(x, Harmonia))
= ∀x(¬Grandparent(x, Harmonia))
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Question Answering: Result

• Resolution on the previous example generates F in the end, but

what that answers is the question “Is there a grandparent of

Harmonia?”. Of course the answer is yes, but the question is

who?.

• The negated question in the above examples was

¬Grandparent(x, Harmonia). Clearly, the binding which

x ultimately receives is the desired answer!

• Observation: one substitution along the way, starting from

¬Grandparent(x, Harmonia), the negated conclusion, is

{x/Hera}, thus Hera must be an answer.

Exercise: use resolution to derive F in the example in the previous

slide.
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Answer Extraction

We can introduce special predicates to extract the answers.

• Answer predicate:

¬Grandparent(x, Harmonia) ∨Answer(x)

• The answer predicate has these properties:

– It does not resolve with anything, but it keeps track of variable

bindings.

– The theorem prover recognize a clause consisting only of the

Answer predicate as F .

• For example, resolution on the previous example results in:

Answer(Hera)

as the final clause.
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First-Order Logic: Summary

• Standard forms: prenex normal form, skolemization, CNF.

• Resolution: negated conclusion, substitution, unification, factors

and resolvents.

• Theorem provers: two-pointer method, various deletion strategies,

various speed up strategies.

• Application of theorem provers: question answering.
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Key Points

• resolvent : definition, and how to derive

• properties of resolution: sound and complete

• theorem proving algorithm: level saturation (two pointer method)

• theorem proving: strategies for efficient resolution

• advantages and disadvantages of resolution.

• application: answer extraction.
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