
Test-Driven Development 
and
Refactoring

Project 3 Lecture

CPSC 315 – Programming Studio

Fall 2010

Testing

● Discussed before, general ideas all still hold

● Test-Driven Development
– Generally falls under Agile heading
– A style of software development, not just a matter 

of testing your code
– Enforces testing as part of the development 

process

Test Driven Development 
Overview

● Repeat this process:

1. 1. Write a new test

2. 2. Run existing code against all tests; it 
should generally fail on the new test

3. 3. Change code as needed

4. 4. Run new code against tests; it should 
pass all tests

5. 5. Refactor the code

Test Writing First

● Idea is to write tests, where each test 
adds some degree of functionality

● Passing the tests should indicate 
working code (to a point)

● The tests will ensure that future 
changes don’t cause problems



Running Tests

● Use a test harness/testing framework 
of some sort to run the tests
– A variety of ways to do this, including 

many existing frameworks that support 
unit tests

– JUnit is the most well-known, but there is 
similar functionality across a wide range of 
languages 

Test framework

● Specify a test fixture
– Basically builds a state that can be tested
– Set up before tests, removed afterward

● Test suite run against each fixture
– Set of tests (order should not matter) to verify various 

aspects of functionality
– Described as series of assertions

● Runs all tests automatically
– Either passes all, or reports failures

● Better frameworks give values that  caused failure

Mock Objects

● To handle complex external queries 
(e.g. web services), random data, etc. 
in testing

● Implements an interface that provides 
some functionality
– Can be complex on their own – e.g. 

checking order of calls to some object, 
etc.

– Can control the effect of the interface

Example Mock Object

● Remote service
– Interface to authenticate, put, get
– Put and Get implementations check that 

authentication was called
– Get verifies that only things that were “put” can 

be gotten.
● As opposed to an interface that just returned 

valid for authenticate/put, and returned fixed 
value for get.



Successful Tests

● Tests should eventually pass
● You need to check that all tests for that 

unit have passed, not just the most 
recent.

Refactoring

● As code is built, added on to, it 
becomes messier

● Need to go back and rewrite/reorganize 
sections of the code to make it cleaner

● Do this on a regular basis, or when 
things seem like they could use it

● Only refactor after all tests are passing
– Test suite guarantees refactoring doesn’t 

hurt.

Refactoring
Common Operations

● Extract Class
● Extract Interface
● Extract Method
● Replace types with subclasses
● Replace conditional with polymorphic objects
● Form template
● Introduce “explaining” variable
● Replace constructor with “factory” method
● Replace inheritance with delegation
● Replace magic number with symbolic constant
● Replace nested conditional with guard clause

Resources

● Test-Driven Development By Example
– Kent Beck; Addison Wesley, 2003

● Test-Driven Development   A Practical Guide
– David Astels; Prentice Hall, 2003

● Software Testing   A Craftsman’s Approach 
(3rd edition)
– Paul Jorgensen; Auerback, 2008

● Many other books on testing, TDD, 
also


