
CPSC 315 – Programming Studio
Fall 2010

Consistent Data Transfer
● Transfer of data has become increasingly

important
● Can’t assume control of all ways data is

created and used
– Cross-platform, cross-system, etc.
– People want to access data for their own purposes
– People want to use data from several sources

● Data may be more complicated than
“traditional” formats would support
– E.g. ASCII text only good for some text documents

● Need a more universal means of transferring
data

Markup Languages
● Idea is to “tag” information to give a sense of its

meaning/semantics
● How that is handled is up to reader
● Usually separates presentation from structure
● Examples:

– HTML: standard web page information,
interpreted by browsers

– TeX/LaTeX: document specification, style
descriptions determine how it is laid out

XML
● eXtensible Markup Language
● Extensible: able to define additional “tags”

– Specific tags and the semantics associated
with them allow specifications of different
languages

● Developed by the World Wide Web Consortium
(W3C) to help standardize internet information
transfer

● Now used as the basis for many specialized
languages
– Each has its own semantic requirements

XML Characteristics
● Straightforward to use on the internet
● Easily processed/parsed
● Human-readable
● Capable of expressing wide range of

applications
– Including hierarchies, tables

● Can be very large/verbose

XML Document Text
● Intermingled character data and markups
● Markups:

– Start/End tags (and empty element tags)
– Entity/Character references
– Comments
– CDATA delimiters
– Processing Instructions
– XML/Text declarations
– Document type declarations

Basic XML Syntax
● Some prolog/header

– Possibly describing/referring to type of XML
● Single root element
● More elements forming a tree

– Elements fully “nest” inside each other
– Can have any number of children elements

● Elements begin with a start tag, end with an end
tag
– <Elem>Stuff in element</Elem>

Tag Format
● Starting Tags can declare attributes

– <TagName Attr1=“…” Attr2=‘…’>
– Note that attributes can use “ or ‘

● Ending Tags match starting tag name, but with
a / preceding
– </TagName>

● Character data (and maybe other elements) in
between start/end tags

● Empty element:
– <Elem/>
– Equivalent to <Elem></Elem>

Entity/Character References
● Note: Some character patterns are “reserved”

– <, >, &, ‘, “
● An entity reference is a name given to a

character or set of characters
– Used for any other things to be repeated

● General entity form: &Whatever;

– Used for the “reserved” chacters
● < <, > >, & &, " “, '

 ‘

Character References
● Character References are specialized
● Use the form &#…; where the … is a

reference to a character in an ISO
standard
– & is an &

Comments
● Begin with <!--
● End with -->
● Everything in between is ignored

<!-- This is a comment -->

CDATA sections
● Used to note a section that would

otherwise be viewed as markup data
● <![CDATA[…]]>
<![CDATA[This <a>isnotbad]]>

Processing Instructions
● Allow documents to contain instructions

for applications reading them
– “Outside” the main document

● <? Target … ?>
● Target is the target application name

– Any other instructions follow

<? MyReader -o3 -f input.dat ?>

XML/Text Declarations
● Documents should start with declaration

of XML type used, in a prolog:
– <?xml version=“1.0” ?>

● Other documents “included” should also
have such a prolog, as the first line

XML Semantics
● Semantics must be declared to determine what

is valid syntax
– Tags allowed and their attributes, entities
– Does not say how it is processed

● Can be located in XML document itself
● Can be contained in separate Document Type

Declaration (DTD)
● Newer XML Schema definitions, which capture

semantics in an XML-like document
– But drawbacks, including difficulty to use, not

as universally implemented, large size, etc.

Document Type Declaration
● Defines constraints on the structure of the XML
● Comes before first element
● Either defines or points to external definition of

Document Type Definition (DTD)
● External: <!DOCTYPE Name SYSTEM url>
● Internal: <!DOCTYPE Name […]>
● The DTD can be standalone (no further external

references) or not

Element Declarations
● Define elements and allowed content (character

data, subelements, attributes, etc.)
● <!ELEMENT Name Content>

– Name is the unique name
– Content describes that type of element

● Options for Content:
– EMPTY – nothing allowed in the element
– ANY – no restrictions
– Children elements only
– Mixed character and children elements

Element Declarations: Child
element content

● When an element has (only) child
elements within it

● Specify using:
– Parentheses () for grouping
– The , for sequencing
– The | for “choice of”
– The + (one or more), * (zero or more), or

 ? (zero or one) modifiers.
● If no modifier, means “exactly once”

Example of Child elements
<!Element book (

title,

coverpage,

tableofcontents?,

editionnote*,

preface?,

(chapternumber, chaptertitle, chaptertext)+,

index?

)>

Element Declarations: Mixed
element content

● When an element can contain both
character and child elements

● The character text is denoted as a kind of
special element name: #PCDATA

<!ELEMENT story (#PCDATA|a|b|c)*>

Attribute Declarations
● Define allowed attribute names, their

types, and default values
● <!ATTLIST ElementName Attribute*>

– ElementName is the name of the element
those attributes belong to

– Repeat attribute definition as many times as
needed

Attribute Declaration: Types
● Name Type DefaultValue
● Name is the attribute name
● Type:

– CDATA : string
– Enumerated: specified via a comma-

separated list in parentheses
– Tokenized: a limited form, specified by some

other rule defined in the DTD
– Several variations

Attribute Declaration: Defaults
● Specify a default value

– Also specify whether attribute is needed in
the element

● #REQUIRED
– This attribute must be specified each time

(no default)
● #IMPLIED

– No default is specified
● Otherwise, use the default value given

– Precede by #FIXED if it must always take
that default

Attribute Declaration Example
<!ATTLIST Book

 title CDATA #REQUIRED

author CDATA “anonymous”

publisher CDATA #IMPLIED

category (fiction,nonfiction) “fiction”

language CDATA #FIXED ‘English’

>

Entity Declarations
● Entity References should be declared
● Internal Entity:

– <!ENTITY Name ReplacementText >
<!ENTITY CR “Copyright 2008”>
…
&CR;
● External Entity:

– <!ENTITY Name SYSTEM url >
<!ENTITY BP SYSTEM “http://this.com/BP.xml”>
…
&BP;

There are also other variations on external
entities

Parameter Entities
● Like general entities, but refer to entities

to be used in the Document Type
Declaration

● Use a % instead of an &
<!ENTITY % newdef SYSTEM
“http://this.com/newdef-xml.entities”>

…

%newdef;

Conditionals (in the DTD)
● Used in the DTD to apply different rules
● <![Condition[…]]>

– If Condition is INCLUDE then keep
– If Condition is IGNORE then skip

● Combine with parameter entities:
<!ENTITY % addborder ‘INCLUDE’>
…
<![%addborder;[
… (stuff to draw border) …
]]>

XML Namespaces
● Different XML definitions could define the

same element name.
● If we want to use both, could have

conflict.
● Can distinguish using namespaces.

<a:book>…</a:book>
<b:book>…</b:book>

Defining XML Namespaces
● xmlns attribute in definition of element

xmlns:prefixname=“URL”

<a:book
xmlns:a=http://this.com/adef>

● Can be defined in first use of element or
in XML root element.

● Can define a “default”
– No prefix needed, leave off : also

Summary/More Information
● XML has become a standard way of

transferring information, especially over
the internet

● Provides flexibility to represent a wide
range of data.

● Many texts/online tutorials about XML
● W3C “official” pages:

http://www.w3.org/XML/

See in particular the XML 1.0 specs (more
than the 1.1 specs)

