
Collaborative Code Construction:
Code Reviews and Pair

Programming
CPSC 315 – Programming Studio

Fall 2010

Collaborative Construction

● Working on code development in close
cooperation with others

● Idea
– Developers don’t notice their own errors

very easily
– Others won’t have the same blind spots
– Thus, errors caught more easily by other

people
● Takes place during construction

process

Benefits to Collaborative
Construction

● Can be much more effective at finding errors
than testing alone
– 35% errors found through testing through low-

volume Beta level
– 55-60% errors found by design/code inspection

● Finds errors earlier in process
– Reduces time and cost of fixing them

● Provides mentoring opportunity
– Junior programmers learn from more senior

programmers

More Benefits

● Creates collaborative ownership
– No single “owner” of code
– People can leave team more easily, since

others have seen code
– Wider pool of people to draw from when

fixing later errors in code

Some Types of Collaborative
Construction

● Formal inspections
● Walkthroughs
● Code reading
● Pair programming

Code Reviews
● Method shown to be extremely effective in

finding errors
– ratio of time spent in review vs. later testing and

error correction ranges from 1:20 to 1:100
– Reduced defect correction from 40% of budget to

20%
– Maintenance costs of inspected code is 10% of

non-inspected code
– Changes done with review: 95% correct vs. 20%

without
– Reviews cut errors by anywhere from 20% to

80%
– Several others (examples from Code Complete)

Reviews vs. Testing

● Finds different types of problems than testing
– Unclear error messages
– Bad commenting
– Hard-coded variable names
– Repeated code patterns

● Only high-volume beta testing (and
prototyping) find more errors than formal
inspections

● Inspections typically take 10-15% of budget,
but usually reduce overall project cost

Formal Inspection
Characteristics

● Focus on detection, not correction
● Reviewers prepare ahead of time and arrive

with a list of what they’ve discovered
– Don’t meet unless everyone is prepared

● Distinct roles assigned to participants
– Hold to these roles during review

● Data is collected and fed into future reviews
– Checklists focus reviewers’ attention on common

past problems

Roles during Inspection

● Moderator
● Author
● Reviewer(s)
● Scribe
● Management

● 3 people min
● ~6 people

max

Roles during Inspection

• Moderator
● Author
● Reviewer(s)
● Scribe
● Management

● 3 people min
● ~6 people

max

• Keeps review moving
– Not too fast or slow

●Technically competent
●Handles all meeting
details

● distributing design/code
● distributing checklist
● Setting up room
● Report and followup

Roles during Inspection

● Moderator
• Author
● Reviewer(s)
● Scribe
● Management

● 3 people min
● ~6 people

max

●Plays minor role
● Design/Code should speak

for itself
●Should explain parts that
aren’t clear

● But this alone can be a
problem

● Explain why things that
seem to be errors aren’t

●Might present overview

Roles during Inspection

● Moderator
● Author

• Reviewer(s)
● Scribe
● Management

● 3 people min
● ~6 people

max

• Interest in code but not
author

• Find errors during
preparation

• Find more errors during
meeting

Roles during Inspection

● Moderator
● Author
● Reviewer(s)

• Scribe
● Management

● 3 people min
● ~6 people

max

• Records errors found
and action assigned or
planned

• Should not be moderator
or author

Roles during Inspection

● Moderator
● Author
● Reviewer(s)
● Scribe

• Management

● 3 people min
● ~6 people

max

● Usually should not be
involved

● Changes from technical to
political meeting

●Might need to see results
of meeting

Stages of Inspection –
Planning

● Author gives code/design to moderator
● Moderator then:

– chooses reviewers
– ensures code is appropriate for review

● e.g. line numbers printed

– distributes code and checklist
– sets meeting time

Stages of Inspection –
Overview

● If reviewers aren’t familiar with code at
all, can have overview

● Author gives a brief description of
technical requirements for code

● Separate from review meeting
● Can have negative consequences

– Groupthink
– Minimize points that should be more

important

Stages of Inspection –
Preparation

● Reviewers work alone to scrutinize for errors
– Checklist can guide examination

● Depending on code, review rate varies
– 125 to 500 lines per hour

● Reviewers can have varied “roles”
– be assigned “perspective”

● e.g. evaluate from user’s view, or from designer’s view
– evaluate different scenarios

● e.g. describe what code does, or whether requirement
is met

– read code/design in certain order/way
● e.g. top-down, or bottom-up

Stages of Inspection –
 Inspection Meeting

● A reviewer chosen to paraphrase design or read
code
– Explain all logic choices in program

● Moderator keeps things moving/focused
● Scribe records errors when found

– Record type and severity
● Don’t discuss solutions!

– Only focus is on identifying problems
– Sometimes don’t even discuss if it actually is an error – if it

seems like one, it is one
● No more than 1 per day, about a 2 hour limit

Stages of Inspection –
“Third Hour” meeting

● Depending on interest/stake of
reviewers, possibly hold a separate
followup meeting
– Immediately after inspection meeting

● Focus here is to discuss possible
solutions

Stages of Inspection –
Inspection Report

● Moderator produces report shortly after
meeting
– List of defects, types, and severity

● Use this report to update checklist to be used
in future inspections
– List main types of errors commonly found
– No more than 1 page total length

● Collect data on time spent and number of
errors
– Helps evaluate how well things work, justify effort

Stages of Inspection –
Rework

● Moderator assigns defects to someone
to repair
– Usually the author

Stages of Inspection –
Follow-Up

● Moderator verifies that work assigned
was carried out.

● Depending on number and severity of
errors, could take different forms:
– Just check with author that they were fixed
– Have reviewers check over the fixes
– Start cycle over again

Adjusting Inspections Over
Time

● Organizations will have characteristics
of code unique to them
– Density of code determines how fast

reviewers and inspection meeting can go
(application tends to be faster than system
code/design)

– Checklists highlight common problems
● Measure effect of any changes

– Evaluate whether they actually improved
process

Inspections and Egos
● Point is to improve code

– Not debate alternative implementations
– Not discuss who is wrong/right
– Moderator needs to control discussion

● Author needs to be able to take criticism of
code
– May have things mentioned that aren’t “really”

errors
– Don’t debate and defend work during review

● Reviewers need to realize the code is not
“theirs”
– Up to author (or someone else) to determine fix

Walkthroughs

● Alternative to formal code inspection
● Vague term, many interpretations

– Less formal than inspections, though
● Usually hosted and moderated by author
● Chance for senior and junior programmers to

mix
● Like inspection:

– Preparation required
– Focus on technical issues
– Goal is detection, not correction
– No management

Walkthrough Evaluation

● In best cases, can match formal code
inspections in quality

● In worst cases, can lower productivity,
eating more time than saved

● Can work well for large groups
● Can work well when bringing in

“outsiders”

Code Reading

● Alternative to inspections and
walkthroughs

● Author gives out code to two or more
reviewers

● They read independently
● Meeting held for everyone

– Reviewers present what they’ve found, but
don’t do a code walkthrough

Code Reading Evaluation

● Most errors tend to be found in
individual review
– Reduces effort and overhead of managing

group dynamics at inspection meeting
– Maximizes productive effort per person –

time not wasted in meetings where others
are speaking

● Works well for geographically
distributed reviewers

Pair Programming

● Basic idea: One person codes with another
looking over the shoulder.

● Person at keyboard writes code
● Second person is active participant

– Watch for errors
– Think strategically about code

● What’s next?
● Is code meeting overall goal/design?
● How to test this code

Successful Pair Programming

● Standardize coding style
● Don’t force pairs for easy tasks
● Rotate pairs and work assignments

frequently
● Use “good” matches

– Avoid personality conflicts
– Avoid major differences in speed/experience

● Set up good work environment
● At least one pair member should be

experienced

Evaluating Pair Programming

● Seems to achieve quality level similar
to formal inspection

● Tends to decrease development time
– Code written faster, fewer errors

● Tends to be higher quality code
– Holds up better during crunch time – fewer

shortcuts taken that come back to haunt
● All the traditional collaborative benefits

