
The Software Design 
Process

CPSC 315 – Programming Studio

Fall 2009

Outline

● Challenges in Design
● Design Concepts
● Heuristics
● Practices

Challenges in Design

● A problem that can only be defined by 
solving it
– Only after “solving” it do you understand 

what the needs actually are
– e.g. Tacoma Narrows bridge design
– “Plan to throw one away”

Challenges in Design

● Process is Sloppy
– Mistakes
– Wrong, dead-end paths
– Stop when “good enough”

● Tradeoffs and Priorities
– Determine whether design is good
– Priorities can change



Challenges in Design

● Restrictions are necessary
– Constraints improve the result

● Nondeterministic process
– Not one “right” solution

● A Heuristic process
– Rules of thumb vs. fixed process

● Emergent
– Evolve and improve during design, coding

Levels of Design

● Software system as a whole
● Division into subsystems/packages
● Classes within packages
● Data and routines within classes
● Internal routine design

● Work at one level can affect those below and 
above.

● Design can be iterated at each level

Key Design Concepts

● Most Important: Manage Complexity
– Software already involves conceptual 

hierarchies, abstraction
– Goal: minimize how much of a program 

you have to think about at once
– Should completely understand the impact 

of code changes in one area on other 
areas

Good Design Characteristics

Minimal complexity Favor “simple” over 
“clever”



Good Design Characteristics

● Minimal complexity

Ease of maintenance
Imagine what 
maintainer of code 
will want to know
Be self-explanatory

Good Design Characteristics

● Minimal complexity
● Ease of maintenance

Loose coupling

Keep connections 
between parts of 
programs minimized
 Avoid n2 interactions!

Abstraction, 
encapsulation, 
information hiding

Good Design Characteristics

● Minimal complexity
● Ease of maintenance
● Loose coupling

Extensibility

Should be able to 
add to one part of 
system without 
affecting others

Good Design Characteristics

● Minimal complexity
● Ease of maintenance
● Loose coupling
● Extensibility

Reusability

Design so code 
could be “lifted” into 
a different system
Good design, even if 
never reused



Good Design Characteristics

● Minimal complexity
● Ease of maintenance
● Loose coupling
● Extensibility
● Reusability

High fan-in

For a given class, 
have it used by 
many others
Indicates good 
capture of 
underlying functions

Good Design Characteristics

● Minimal complexity
● Ease of maintenance
● Loose coupling
● Extensibility
● Reusability
● High fan-in

Low-to-medium fan-out

Don’t use too many 
other classes
Complexity 
management

Good Design Characteristics

● Minimal complexity
● Ease of maintenance
● Loose coupling
● Extensibility
● Reusability
● High fan-in
● Low-to-medium fan-out

Portability

Consider what will 
happen if moved to 
another environment

Good Design Characteristics

● Minimal complexity
● Ease of maintenance
● Loose coupling
● Extensibility
● Reusability
● High fan-in
● Low-to-medium fan-out
● Portability

Leanness

Don’t add extra parts
Extra code will need 
to be tested, 
reviewed in future 
changes



Good Design Characteristics

● Minimal complexity
● Ease of maintenance
● Loose coupling
● Extensibility
● Reusability
● High fan-in
● Low-to-medium fan-out
● Portability
● Leanness

Stratification

Design so that you 
don’t have to 
consider beyond the 
current layer

Good Design Characteristics

● Minimal complexity
● Ease of maintenance
● Loose coupling
● Extensibility
● Reusability
● High fan-in
● Low-to-medium fan-out
● Portability
● Leanness
● Stratification

Standard Techniques

Use of common 
approaches make it 
easier to follow code 
later
Avoid unneeded 
exotic approaches

Design Heuristics

● Rules-of-thumb
– “Trials in Trial-and-Error”

● Understand the Problem
● Devise a Plan
● Carry Out the Plan
● Look Back and Iterate

Find Real-World Objects

● Standard Object-Oriented approach
● Identify objects and their attributes
● Determine what can be done to each object
● Determine what each object is allowed to do 

to other objects
● Determine the parts of each object that will 

be visible to other objects (public/private)
● Define each object’s public interface



Form Consistent Abstractions

● View concepts in the aggregate
– “Car” rather than “engine, body, wheels, etc.”

● Identify common attributes
– Form base class

● Focus on interface rather than 
implementation

● Form abstractions at all levels
– Car, Engine, Piston

Inheritance

● Inherit when helpful
– When there are common features

Information Hiding

● Interface should reveal little about inner 
workings
– Example: Assign ID numbers

● Assignment algorithm could be hidden
● ID number could be typed

– Encapsulate Implementation Details
● Don’t set interface based on what’s easiest 

to use
– Tends to expose too much of interior

● Think about “What needs to be hidden”

More on Information Hiding

● Two main advantages
– Easier to comprehend complexity
– Localized effects allow local changes

● Issues:
– Circular dependencies

● A->B->A

– Global data (or too-large classes)
– Performance penalties

● Valid, but less important, at least at first



Identify Areas Likely to 
Change

● Anticipate Change
– Identify items that seem likely to change
– Separate these items into their own class
– Limit connections to that class, or create 

interface that’s unlikely to change
● Examples of main potential problems:

Business Rules, Hardware Dependencies, Input/Output, 
Nonstandard language features, status variables, 
difficult design/coding areas

Keep Coupling Loose

● Relations to other classes/routines
● Small Size

– Fewer parameters, methods
● Visible

– Avoid interactions via global variables
● Flexible

– Don’t add unnecessary dependencies
– e.g. using method that’s not unique to the class it 

belongs to

Kinds of Coupling

● Data-parameter (good)
– Data passed through parameter lists
– Primitive data types

● Simple-object (good)
– Module instantiates that object

● Object-parameter (so-so)
– Object 1 requires Object 2 to pass an Object 3

● Semantic (bad)
– One object makes use of semantic information 

about the inner workings of another

Examples of Semantic 
Coupling

● Module 1 passes control flag to Module 2
– Can be OK if control flag is typed

● Module 2 uses global data that Module 1 modifies
● Module 2 relies on knowledge that Module 1 calls 

initialize internally, so it doesn’t call it
● Module 1 passes Object to Module 2, but only 

initializes the parts of Object it knows Module 2 
needs

● Module 1 passes a Base Object, but Module 2 
knows it is actually a Derived Object, so it typecasts 
and calls methods unique to the derived object



Design Patterns

● Design Patterns, by “Gang of Four” 
(Gamma, Helm, Johnson, Vlissides)

● Common software problems and 
solutions that fall into patterns 

● Provide ready-made abstractions
● Provide design alternatives
● Streamline communication among 

designers

More on Design Patterns

● Given common names
– e.g. “Bridge” – builds an interface and an 

implementation in such a way that either 
can vary without the other varying

● Could go into much more on this

Other Heuristics

● Strong Cohesion
– All routines support the main purpose

● Build Hierarchies
– Manage complexity by pushing details away

● Formalize Class Contracts
– Clearly specify what is needed/provided

● Assign Responsibilities
– Ask what each object should be responsible for

More Heuristics

● Design for Test
– Consider how you will test it from the start

● Avoid Failure
– Think of ways it could fail

● Choose Binding Time Consciously
– When should you set values to variables

● Make Central Points of Control
– Fewer places to look -> easier changes



More Heuristics

● Consider Using Brute Force
– Especially for early iteration
– Working is better than non-working

● Draw Diagrams
● Keep Design Modular

– Black Boxes

Design Practices
(we may return to these)

● Iterate – Select the best of several attempts
● Decompose in several different ways
● Top Down vs. Bottom Up
● Prototype
● Collaborate: Have others review your design 

either formally or informally
● Design until implementation seems obvious

– Balance between “Too Much” and “Not Enough”
● Capture Design Work

– Design documents


