
API Design

CPSC 315 – Programming Studio

Fall 2010
Follows Kernighan and Pike, The Practice of Programming and
Joshua Bloch’s Library-Centric Software Design ’05 Keynote Talk: 
”How to Design a Good API and Why It Matters”

API

● Application Programming Interface
● Source code interface

– For library or OS
– Provides services to a program

● At its base, like a header file
– But, more complete

Why is API Design Important?

● Company View
– Can be asset – big user investment in 

learning and using
– Bad design can be source of long-term 

support problems
● Once used, it’s tough to change

– Especially if there are several users
● Public APIs – One chance to get it right

Characteristics of Good APIs

● Easy to learn
● Easy to use even without documentation
● Hard to misuse
● Easy to read and maintain code that uses it
● Sufficiently powerful to satisfy requirements
● Easy to extend
● Appropriate to audience



Designing an API

● Gather requirements
– Don’t gather solutions
– Extract true requirements
– Collect specific scenarios where it will be used

● Create short specification
– Consult with users to see whether it works
– Flesh it out over time

● Hints:
– Write plugins/use examples before fully designed 

and implemented
– Expect it to evolve

Broad Issues to Consider in 
Design

● 1. Interface
– The classes, methods, parameters, names

● 2. Resource Management
– How is memory, other resources dealt with

● 3. Error Handling
– What errors are caught and what is done

● Information Hiding
– How much detail is exposed
– Impacts all three of the above

1. Interface Principles

● Simple
● General
● Regular
● Predictable
● Robust
● Adaptable 

Simple

● Users have to understand!
● Do one thing and do it well

– Functionality should be easy to explain
● As small as possible, but never smaller

– Conceptual weight more important than providing 
all functionality

– Avoid long parameter lists
● Choose small set of orthogonal primitives

– Don’t provide 3 ways to do the same thing



General

● Implementation can change, API can’t
● Hide Information!

– Don’t let implementation detail leak into API
– Minimize accessibility issues (e.g. private classes 

and members)
– Implementation details can confuse users

● Be aware of what is implementation
– Don’t overspecify behavior of modules
– Tuning parameters are suspect

Regular

● Do the same thing the same way everywhere
– Related things should be achieved by related 

means
● Consistent parameter ordering, required inputs
● Functionality (return types, errors, resource 

management)

● Names matter
– Self explanatory
– Consistent across API

● Same word means same thing in API
● Same naming style used
● Consistent with related interfaces outside the API

Predictable

● Don’t violate the principle of Least 
Astonishment
– User should not be surprised by behavior
– Even if this costs performance

● Don’t reach behind the user’s back
– Accessing and modifying global variables
– Secret files or information written
– Be careful about static variables 

Predictable

● Try to minimize use of other interfaces
– Make as self-contained as possible
– Be explicit about external services 

required
● Document!

– Every class, method, interface, 
constructor, parameter, exception

– When states are kept, this should be very 
clearly documented



Robust

● Able to deal with unexpected input
● Error Handling (see later)

Adaptable

● API can be extended, but never 
shortened
– Heavily used APIs likely will be extended

● Information Hiding
– Implementation details should not affect 

API

2. Resource Management

● Determine which side is responsible for
– Initialization
– Maintaining state
– Sharing and copying
– Cleaning up

● Various resources
– Memory
– Files
– Global variables

Resource Management

● Generally, free resources where they were 
allocated

● Return references or copies?
– Can have huge performance and ease of use 

impact
● Multi-threaded code makes this especially 

critical
– Reentrant: works regardless of number of 

simultaneous executions
– Avoid using anything (globals, static locals, other 

modifications) that others could also use
– Locks can be important



3. Error Handling

● Catch errors, don’t ignore them
● “Print message and fail” is not always good

– Especially in APIs
– Need to allow programs to recover or save data

● Detect at low level, but handle at high level
– Generally, error should be handled by calling 

routine
– The callee can leave things in a “nice” state for 

recovery, though
● Keep things usable in case the caller can recover

Fail Fast

● Report as soon as an error occurs
● Sometimes even at compile time!

– Use of static types, generics

Error Management

● Return values
– Should be in form the calling function can use
– Return as much useful information as possible
– Sentinel values only work if function cannot return 

all possible values of that type
– Define pairs, or return another parameter to 

indicate errors
● Use error “wrapper function” if needed

– Consistent way of marking, reporting error status
– Encourages use
– But, can add complexity

Exceptions

● Generally indicate a programming error
● Programming construct

– Set exception value (e.g. as return)
– Other program operation when exception thrown
– Exceptions usually in global registry

● Include information about failure
– For repair and debugging

● Exceptions should generally be unchecked
– Automatically process globally, rather than 

require explicit checks over and over



Exceptions

● Only use in truly exceptional situations
– Never use as a control structure
– The modern GOTO

● Never use exceptions for expected 
return values
– e.g. Invalid file name passed to library is 

“common”, not an exception


