
Database Implementation
Issues

CPSC 315 – Programming
Studio
Fall 2010
Project 1, Lecture 5

Slides adapted from those used by
Jennifer Welch

Database Implementation

● Typically, we assume databases are
very large, used by many people, etc.

● So, specialized algorithms are usually
used for databases
– Efficiency
– Reliability

Storing Data

● Other terminology for implementation
– Relation is a table
– Tuple is a record
– Attribute is a field

Storing a Record (Tuple)

● Often can assume all the fields are
fixed (maximum) length.

● For efficiency, usually concatenate all
fields in each tuple.

● Variable length: store max length
possible, plus one bit for termination

● Store the offsets for concatenation in a
schema

Example: tuple storage

● Senator
– Name – variable character (100 + 1 bytes)
– State – fixed character (2 bytes)
– YearsInSenate – integer (1 byte)
– Party – variable character (11 + 1 bytes)

0 103101 104

More on tuples/records

● So, schema would store:
– Name: 0
– State: 101
– YearsInSenate: 103
– Party: 104

● Note that HW/efficiency considerations
might give minimum sizes for each field
– e.g. multiple of 4 or 8 bytes

Variable Length Fields

● Storing max size may be problematic
– Usually nowhere close – waste space
– Could make record too large for a “unit” of

storage
● Store fixed-length records, followed by

variable-length
● Header stores info about variable fields

– Pointer to start of each

Record Headers

● Might want to store additional key
information in header of each record
– Schema information (or pointer to

schema)
– Record size (if variable length)
– Timestamp of last modification

Record Headers and Blocks

● Records grouped into blocks
– Correspond with a “unit” of disk/storage
– Header information with record positions

● Also might list which relation it is part of.

– Concatenate records

Header Record 1 Record nRecord 2 …

Addresses

● Addresses of (pointers to) data often
represented

● Two types of address
– Location in database (on disk)
– Location in memory

● Translation table usually kept to map items
currently in virtual memory to the overall
database.
– Pointer swizzling: updating pointers to refer to

disk vs. memory locations

Records and Blocks

● Sometimes want records to span blocks
– Generally try to keep related records in the same

block, but not always possible
– Record too large for one block
– Too much wasted space

● Split parts are called fragments
● Header information of record

– Is it a fragment
– Store pointers to previous/next fragments

Adding, Deleting, Modifying
Records

● Insertion
– If order doesn’t matter, just find a block

with enough free space
● Later come back to storing tables

● If want to keep in order:
● If room in block, just do insertion sort
● If need new block, go to overflow block

– Might rearrange records between blocks
● Other variations

Adding, Deleting, Modifying
Records

● Deletion
– If want to keep space, may need to shift

records around in block to fill gap created
– Can use “tombstone” to mark deleted

records
● Modifying

– For fixed-length, straightforward
– For variable-length, like adding (if length

increases) or deleting (if length
decreases)

Keeping Track of Tables

● We have a bunch of records stored
(somehow).

● We need to query them (SELECT * FROM
table WHERE condition)

● Scanning every block/record is far too slow
● Could store each table in a subset of blocks

– Saves time, but still slow
● Use an index

Indexes

● Special data structures to find all
records that satisfy some condition

● Possible indexes
– Simple index on sorted data
– Secondary index on unsorted file
– Trees (B-trees)
– Hash Tables

Sorted files

● Sort records of the relation according to
field (attribute) of interest.
– Makes it a I file

● Attribute of interest is search key
– Might not be a “true” key

● Index stores (K,a) values
– K = search key
– a = address of record with K

Dense Index

● One index entry per record
– Useful if records are huge, and index can

be small enough to fit in memory
● Can search efficiently and then

examine/retrieve single record only

1 75 7 10 12 18 1818 27 30 65444335 73

1 75 7 10 12 18 1818 27 30 65444335 73

Sparse Index
(on sequential file)

● Store an index for only every n records
● Use that to find the one before, then

search sequentially.

1 75 7 10 12 18 1818 27 30 65444335 73

1 7 12 27 44

Multiple Indices

● Indices in hierarchy
● B-trees are an example

1 75 7 10 12 18 1818 27 30 65444335 73

1 7 12 27 44

1 27

Duplicate Keys

● Can cause issues, in both dense and
sparse indexes, need to account for

1 75 7 10 12 18 1818 27 30 65444335 73

1 7 12 27 44

What if not sorted?

● Can be the case when we want two or
more indices on the same data
– e.g. Senator.name, Senator.party

● Must be dense (sparse would make no
sense)

● Can sort the index by the search key
● This second level index can be sparse

Example – Secondary Index

1 75 71012 18 1818 273065444335 73

1 75 7 10 12 18 1818 27 30 65444335 73

1 7 12 27 44

1 27

Buckets

● If there are lots of repeated keys, can
use buckets

● Buckets are in between the secondary
index and the data file

● One entry in index per key – points to
bucket file

● Bucket file lists all records with that key

Storage Considerations

● Memory Hierarchy
– Cache
– Main Memory
– Secondary storage (disk)
– Tertiary storage (e.g. tape)

● Smaller amounts but faster access
● Need to organize information to

minimize “cache misses”

Storage Considerations:
Making things efficient

● Placing records together in blocks for group
fetch

● Prefetching
– Prediction algorithm

● Parallelism
– placing across multiple disks to read/write faster

● Mirroring
– double read speed

● Reorder read/write requests in batches

Storage Considerations
Making it reliable

● Checksums
● Mirroring disks
● Parity bits
● RAID levels

