
SQL Queries

CPSC 315 – Programming
Studio
Fall 2010
Project 1, Lecture 4

Slides adapted from those used by
Jeffrey Ullman, via Jennifer Welch

Modifying the Database

● Data Manipulation Language
● Given a schema, must “populate” the

database with actual data
● Insert, Delete, Modify

Insertion

● INSERT command:

INSERT INTO <Relation>

VALUES (<value list>);
● Can specify only certain attributes in

Relation

Relation(<attribute list>)
● Instead of values, can have subquery

Insertion Example

● Senator(Name,Party,State,Years)
INSERT INTO Senator

VALUES (Jill Smith, Republican, NY, 5);

INSERT INTO Senator(Name, State)

VALUES (Jill Smith, NY);

Deletion

● Delete from relation according to
condition

DELETE FROM <Relation>

WHERE <condition>;
● Example: delete Texas Senators:

DELETE FROM Senator

WHERE State = ‘TX’;

Modification

● Update subset according to condition
UPDATE <Relation>
SET <list of attribute assignments>
WHERE <condition>;
● Example: Joe Lieberman becomes

Independent
UPDATE Senator
SET Party = ‘Independent’
WHERE Name = ‘Joseph Lieberman’;

Queries

● The heart of SQL
● Queries can form portion of other

commands
– e.g. INSERT results of a query into a table

● Form:
– SELECT attributes
– FROM relation(s)
– WHERE condition

Example
Name Party State Years

Jill Smith Republican NY 5

Joe Adams Democrat NJ 0

Sue Jones Democrat CT 9

Jim Brown Republican PA 15

Senator:

Query:
SELECT Name

FROM Senator

WHERE Party = ‘Republican’;

Result: Name

Jill Smith

Jim Brown

Statement Processing

● Begin with the relation(s) in the FROM clause
– Can be the result of another query!

● Apply selection condition in WHERE clause
– Can potentially be very complex, and include

subqueries
● Get the attributes given in (more generally,

apply a projection to) the SELECT clause
● Process: iterate through all tuples in FROM,

checking vs. WHERE, and for those that
match, apply the SELECT

SELECT Clause - *
● Can use a * for SELECT to indicate all

attributes given in the relation listed in
FROM.

● Senator:

● Query:
SELECT *
FROM Senator
WHERE Party = ‘Republican’;

● Result:

Name Party State Years

Jill Smith Republican NY 5

Joe Adams Democrat NJ 0

Sue Jones Democrat CT 9

Jim Brown Republican PA 15

Name Party State Years

Jill Smith Republican NY 5

Jim Brown Republican PA 15

SELECT Clause - AS
● Can use AS to rename attributes in result
● Senator:

● Query:
SELECT Name AS Person, Party AS Affiliation, State
FROM Senator
WHERE Party = ‘Republican’;

● Result:

Name Party State Years

Jill Smith Republican NY 5

Joe Adams Democrat NJ 0

Sue Jones Democrat CT 9

Jim Brown Republican PA 15

Person Affiliation State

Jill Smith Republican NY

Jim Brown Republican PA

SELECT Clause - Expression
● Can include expressions in SELECT Clause
● Senator:

● Query:
SELECT Name, Years * 365 AS DaysInOffice
FROM Senator
WHERE Party = ‘Republican’;

● Result:

Name Party State Years

Jill Smith Republican NY 5

Joe Adams Democrat NJ 0

Sue Jones Democrat CT 9

Jim Brown Republican PA 15

Name DaysInOffice

Jill Smith 1825

Jim Brown 5475

SELECT Clause - Constants
● Can include constant attributes
● Senator:

● Query:
SELECT Name, ‘Senator’ AS OfficeHeld
FROM Senator
WHERE Party = ‘Republican’;

● Result:

Name Party State Years

Jill Smith Republican NY 5

Joe Adams Democrat NJ 0

Sue Jones Democrat CT 9

Jim Brown Republican PA 15

Name OfficeHeld

Jill Smith Senator

Jim Brown Senator

Aggregations

● SUM, AVG, COUNT, MIN, MAX
– COUNT(*) counts number of tuples

● Applied to column in SELECT clause
● Use DISTINCT to eliminate duplicates
● NULLs are ignored
● If Aggregation is used, every selected

column must be aggregated or in the
GROUP BY list

Grouping Aggregations

● Adding GROUP BY <attribute> at the
end will apply aggregation only to
group
– e.g. to get the total number of U.S.

Representatives from each state:
SELECT State, COUNT(*)

FROM USRepresentatives

GROUP BY State

HAVING

● Can restrict GROUP using HAVING
– HAVING can refer to the FROM clause

and its attributes
– e.g. Count representatives by state, only if

all representatives have 3 years
experience
SELECT State, COUNT(*)
FROM USRepresentatives
GROUP BY State

 HAVING MIN(Years) > 3

WHERE Clause –
Complex Expressions

● Can include NOT, AND, OR operators
● Senator:

● Query:
SELECT *
FROM Senator
WHERE Party = ‘Republican’ OR Years > 3;

● Result:

Name Party State Years

Jill Smith Republican NY 5

Joe Adams Democrat NJ 0

Sue Jones Democrat CT 9

Jim Brown Republican PA 15

Name Party State Years

Jill Smith Republican NY 5

Sue Jones Democrat CT 9

Jim Brown Republican PA 15

WHERE Clause – other
effects

● Order of operations, including
parentheses

● LIKE: String comparisons with
wildcards
– % means any string
– _ means any character

WHERE Clause – NULL
values

● Tuples may contain NULL values
– Undefined/Unknown
– Inapplicable

● All conditions evaluate to either TRUE,
FALSE, or UNKNOWN

● Comparisons to NULL are UNKNOWN
● Tuples selected only if TRUE

3-valued Logic

● Can think of values as
– TRUE = 1
– FALSE = 0
– UNKNOWN = ½

● Operations would be
– OR = MAX
– AND = MIN
– NOT = 1-x

● Example: (T AND ((NOT U OR F) AND NOT (U OR
T)))

3-valued Logic

● Can think of values as
– TRUE = 1
– FALSE = 0
– UNKNOWN = ½

● Operations would be
– OR = MAX
– AND = MIN
– NOT = 1-x

● Example: (T AND ((NOT U OR F) AND NOT (U OR
T)))

 MAX(1- ½,0) = MAX(½,0) = ½ = U

3-valued Logic

● Can think of values as
– TRUE = 1
– FALSE = 0
– UNKNOWN = ½

● Operations would be
– OR = MAX
– AND = MIN
– NOT = 1-x

● Example: (T AND (U AND NOT (U OR T)))

3-valued Logic

● Can think of values as
– TRUE = 1
– FALSE = 0
– UNKNOWN = ½

● Operations would be
– OR = MAX
– AND = MIN
– NOT = 1-x

● Example: (T AND (U AND NOT (U OR T)))
 MAX(½, 1) = 1 = T

3-valued Logic

● Can think of values as
– TRUE = 1
– FALSE = 0
– UNKNOWN = ½

● Operations would be
– OR = MAX
– AND = MIN
– NOT = 1-x

● Example: (T AND (U AND NOT T)

3-valued Logic

● Can think of values as
– TRUE = 1
– FALSE = 0
– UNKNOWN = ½

● Operations would be
– OR = MAX
– AND = MIN
– NOT = 1-x

● Example: (T AND (U AND NOT T))
 MIN(½, 1-1) = MIN(½,0) = 0 = F

3-valued Logic

● Can think of values as
– TRUE = 1
– FALSE = 0
– UNKNOWN = ½

● Operations would be
– OR = MAX
– AND = MIN
– NOT = 1-x

● Example: (T AND F)

3-valued Logic

● Can think of values as
– TRUE = 1
– FALSE = 0
– UNKNOWN = ½

● Operations would be
– OR = MAX
– AND = MIN
– NOT = 1-x

● Example: (T AND F)
 MIN(0,1) = 0 = F

3-valued Logic

● Can think of values as
– TRUE = 1
– FALSE = 0
– UNKNOWN = ½

● Operations would be
– OR = MAX
– AND = MIN
– NOT = 1-x

● Example: F
 (T AND ((NOT U OR F) AND NOT (U OR T)))

Unexpected Results for
NULLs

● WHERE (Years > 2) OR (Years < 3)
● This should “cover” all cases
● If Years is NULL

– Years > 2 is UNKNOWN
– Years < 3 is UNKNOWN
– So the OR is UNKNOWN
– And thus the tuple is NOT selected!

WHERE Clause –
IN operator

● <tuple> IN <relation>
– TRUE iff the tuple is a

member of the relation
SELECT *

FROM ElectedOfficial

WHERE Name IN USRep

ElectedOfficial

Name Party

Chet Edwards Democrat

John Cornyn Republican

John Adams Federalist

Ron Paul Republican

Result

Name Party

Chet Edwards Democrat

Ron Paul Republican

USRep

Name

Ron Paul

Chet Edwards

WHERE Clause –
EXISTS operator

● EXISTS (<relation>)
– TRUE iff the relation

is not empty relation
SELECT *

FROM ElectedOfficial

WHERE EXISTS(USRep)

ElectedOfficial

Name Party

Chet Edwards Democrat

John Cornyn Republican

John Adams Federalist

Ron Paul Republican

USRep

Name

Ron Paul

Chet Edwards

Result

Name Party

Chet Edwards Democrat

John Cornyn Republican

John Adams Federalist

Ron Paul Republican

EXISTS (and other) operators

● Usually applied to the results of a
subquery

● Example: is any Senator a Whig?
EXISTS(

 SELECT *

 FROM Senator

 WHERE Party = ‘Whig’

)

WHERE Clause –
ANY and ALL operators

● x = ANY(<relation>)
– TRUE iff x is equal to at least one tuple in the

relation
● x = ALL(<relation>)

– TRUE iff x is equal to all tuples in the relation
● The = can also be >, >=, <, <=, <>
● The relation should have only one attribute

Example: ANY

SELECT *

FROM ElectedOfficial

WHERE Party = ANY (CurrentParties)

ElectedOfficial

Name Party

Chet Edwards Democrat

John Cornyn Republican

John Adams Federalist

Ron Paul Republican

CurrentParties

Name

Democrat

Republican

Result

Name Party

Chet Edwards Democrat

John Cornyn Republican

Ron Paul Republican

Example: ALL
Senator

Name Party State Years

Jill Smith Republican NY 5

Joe Adams Democrat NJ 0

Sue Jones Democrat CT 9

Jim Brown Republican PA 15

SELECT *

FROM Senator

WHERE Years > ALL (YearsPresidentsInSenate)

YearsPresidentsInSenate

Years Served

6

0

12

6

0

Name Party State Years

Jim Brown Republican PA 15

UNION, INTERSECT,
DIFFERENCE

● Can combine subqueries with Boolean
operations
– e.g. (subquery) UNION (subquery)

● Default: duplicates are removed by these
operations unless ALL is included
– (subquery) INTERSECT ALL (subquery)

● Likewise, can remove duplicates in normal
SELECT by including DISTINCT
– SELECT DISTINCT Years …

“Bag” vs. “Set” semantics

● Items are in a “bag”
– Duplicates OK

● Items are in a “set”
– Duplicates removed

Joins

● Combining relations into one new
relation
– Many ways, variations

● <relation> CROSS JOIN <relation>
– Takes every possible combination

CROSS JOIN example
VanTypes

Make Model

Dodge Caravan

Honda Odyssey

Result

Make Model Seats Paint

Dodge Caravan Cloth Standard

Dodge Caravan Leather Standard

Dodge Caravan Leather Premium

Honda Odyssey Cloth Standard

Honda Odyssey Leather Standard

Honda Odyssey Leather Premium

SeatsAndPaint

Seats Paint

Cloth Standard

Leather Standard

Leather Premium

Inner Joins
● Inner Joins are based on the Cross Join
● Join is usually limited by some

comparison using ON (Theta Join)
e.g. Senator INNER JOIN Representative
 ON Senator.State = Representative.State

Creates table with one (Senator,
Representative) tuple for every pair from
the same state.
(Note: both State attributes still appear)

Natural Joins

● Automatically looks for matching columns
● Only one column for each match, and only

select tuples that match in those columns

Natural Join Example
Students

Name School

Joe Smith Rice

Jill Smith LSU

Sam Jones Texas A&M

Sue Jones Rice

SchoolLocations

School City

Texas A&M College Station

Rice Houston

LSU Baton Rouge

Result

Name School City

Joe Smith Rice Houston

Jill Smith LSU Baton Rouge

Sam Jones Texas A&M College Station

Sue Jones Rice Houston

OUTER JOIN

● Includes tuples from both relations,
even if no match in the other
– Those attributes are set to NULL

● LEFT, RIGHT, FULL
– Keep all records from left table, or from

right table, or from both

