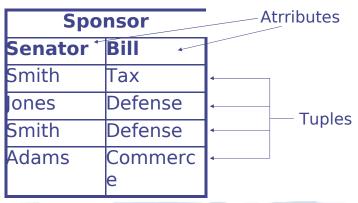
Relational Databases

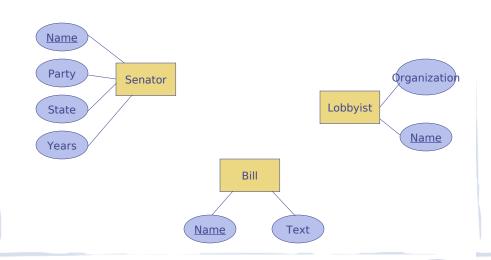
CPSC 315 - Programming Studio Fall 2010 Project 1, Lecture 2


Slides adapted from those used by Jeffrey Ullman, via Jennifer Welch

Schemas

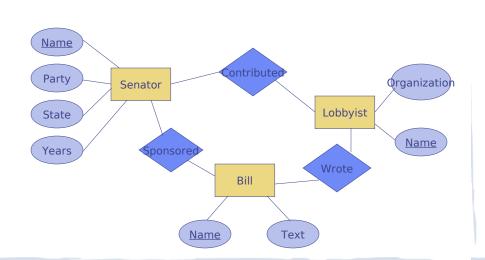
- A relation schema is a relation name and a list of attributes
 - Sponsor(Senator,Bill)
- A database is a collection of relations
- A database schema is the set of all the relation schemas in the database

Relational Data Model


- Relations are stored in tables
 - e.g. Sponsor(Senator,Bill)

Converting from Entity-Relationship Model

- ER: Entity set -> relation
 - ER Attributes become Relational attributes
- ER: Relationship -> relation
 - Keys of connected ER entity sets become Relational attributes


ER Entity Sets

Relations

- Senator(Name,Party,State,Years)
- Bill(Name,Text)
- Lobbyist(Name,Organization)

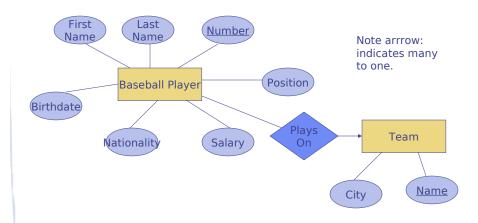
ER Relationships

Relations

- Sponsored(Senator,Bill)
- Wrote(Bill,Lobbyist)
- Contributed(Senator,Lobbyist)
- Remember, each of these is expressed as a table (with the columns given by the "parameters")
- Notice that columns can refer to "bigger" items, with even more attributes

Combining Relations

- Relations can sometimes be combined.
- Assume a "base" entity set with its relation.
- If there is a many-to-one relation, that can be combined with the base entity set.
- Should **not** combine many-to-many
 - Redundancy each of the many stored


Weak Entity Sets

- The relation for a weak entity set must contain all the elements of its key
- Supporting relationships are usually redundant (unless possibly multi-way)

Combining Relations

- Example (many-to-one): (Good)
 - Person(Name, Birthdate, Height, Weight, Eye Color, Hair Color)
 - BornIn(Person,Town)
 - Person(Name, Birthdate, Height, Weight, Eye Color, Hair Color, Town)
- Example(many-to-many): (Bad)
 - Senator(Name, Party, State, Years)
 - Sponsored(Senator, Bill)
 - Senator(Name, Party, State, Years, Bill)

Weak Entity Set Example

Weak Entity Set Example

- Team(<u>Name</u>, City)
- Baseball Player(<u>Number</u>, <u>TeamName</u>, First Name, Last Name, Position, Birthdate, Nationality, Salary)

Weak Entity Set Example

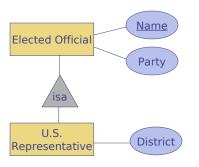
- Team(<u>Name</u>, City)
- Baseball Player(<u>Number</u>, <u>TeamName</u>, First Name, Last Name, Position, Birthdate, Nationality, Salary)
- Note that we don't need PlaysOn(BaseballPlayer.Number, BaseballPlayer.TeamName, Team.Name)

Redundant (same)

Weak Entity Set Example

- Team(<u>Name</u>, City)
- Baseball Player(<u>Number</u>, <u>TeamName</u>,
 First Name, Last Name, Position,
 Birthdate, Nationality, Salary)
- Note that we don't need PlaysOn(BaseballPlayer.Number, BaseballPlayer.TeamName, Team.Name)

Weak Entity Set Example


- Team(<u>Name</u>, City)
- Baseball Player(<u>Number</u>, <u>TeamName</u>, First Name, Last Name, Position, Birthdate, Nationality, Salary)
- Note that we don't need PlaysOn(BaseballPlayer.Number, BaseballPlayer.Team.Name)

Weak Entity Set Example

- Team(<u>Name</u>, City)
- Baseball Player(<u>Number</u>, <u>TeamName</u>,
 First Name, Last Name, Position,
 Birthdate, Nationality, Salary)
- Note that we don't need
 PlaysOn(BaseballPlayer.Number,
 BaseballPlayer.Team.Name)
 Already

Subclasses Different Options

Different ways to represent subclasses

Object-Oriented Style

 One relation for each subset, including all "inherited" attributes

Elected Official			
Name	Party		
Chet Edwards	Democrat		
ohn Cornyn	Republican		
ohn Adams	Federalist		
Ron Paul	Republican		

U.S. Representative				
Name	Party	District		
Chet Edwards	Democrat	17		
Ron Paul	Republican	14		

Included

Entity-Relationship Style

 One relation for each subclass (including key)

Elected Official			
Name	Party		
Chet Edwards	Democrat		
ohn Cornyn	Republican		
ohn Adams	Federalist		
Ron Paul	Republican		

U.S. Representative			
Name	District		
Chet Edwards	17		
Ron Paul	14		

Using Nulls Style

One relation total, with nulls for unknown information

U.S. Representative			
Name	Party	District	
Chet Edwards	Democrat	17	
ohn Cornyn	Republican	NULL	
ohn Adams	Federalist	NULL	
Ron Paul	Republican	14	

 Can save space, but problematic if multiple subclasses or lots of NULLs

Keys

- A Key "functionally determines" all other attributes of the relation
 - Given a relation and a key, there is only one tuple that corresponds to it
- There are subtle differences from an E-R key, which we won't go into.