
Unsupervised Learning

• No teacher signal (i.e. no feedback from the environment).

• The network must discover patterns, features, regularities,

correlations, or categories in the input data and code them in the

output.

• The units and connections must display some degree of

self-organization.

• Unsupervised learning can be useful when there is redundancy

in the input data.

• A data channel where the input data content is less than the

channel capacity, there is redundancy.
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Structure, Redundancy, Statistical Dependence
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• Each pixel can be seen as a random variable.

• When pixel A can be predicted from looking at pixel B:

– They are dependent.

– They are redundant.

– There is structure.

• Unsupervised learning needs such structure in the input.
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What Can Unsupervised Learning Do?

• Familiarity: how similar is the current input to past inputs?

• Principal Component Analysis: find orthogonal basis vectors

(or axes) against which to project high dimensional data.

• Clustering: n output class, each representing a distinct category.

Each cluster of similar or nearby patterns will be classified as a

single class.

• Prototyping: For a given input, the most similar output class (or

exemplar) is determined.

• Encoding: application of clustering/prototyping.

• Feature Mapping: topographic mapping of input space onto

output network configuration.
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Self-Organizing Map (SOM)
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• 1-D or 2-D layout of units.

• One reference vector for each unit.

• Unsupervised learning (no target output).
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SOM: Map vs. Input Space
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• Each weight vector can be plotted in the input space.

• They can then be linked together based on their proximity in the

map.
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SOM Algorithm
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1. Randomly initialize reference vectors wi

2. Randomly sample input vector x

3. Find Best Matching Unit (BMU):

i(x) = argminj ‖ x−wj ‖

4. Update reference vectors:

wj ← wj + αΛ(j, i(x))(x−wj)

α : learning rate

Λ(j, i(x)) : neighborhood function of BMU.

5. Repeat steps 2 – 4.
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Typical Neighborhood Functions

Gaussian Neighborhood
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• Gaussian: Λ(j, i(x)) = exp(−|rj − ri(x)|2/2σ2)

• Flat: Λ(j, i(x)) = 1 if |rj − ri(x)| ≤ σ, and 0 otherwise.

• σ is called the neighborhood radius.
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Training Tips

• Start with large neighborhood radius.

Gradually decrease radius to a small value.

• Start with high learning rate α.

Gradually decrease α to a small value.
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Properties of SOM
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• Approximation of input space.

Maps continuous input space to dis-

crete output space.

• Topology preservation.

Nearby units represent nearby points

in input space.

• Density mapping.

More units represent input space that

are more frequently sampled.
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Performance Measures

• Quantization Error

Average distance between each data vector and its BMU.

εQ =
1

N

NX
j=1

‖ xj −wi(xj)
‖

• Topographic Error

The proportion of all data vectors for which first and second BMUs

are not adjacent units.

εT =
1

N

NX
j=1

u(xj),

u(x) = 1 if the 1st and 2nd BMUs are not adjacent

u(x) = 0 otherwise.
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Example: 2D Input / 2D Output

• Train with uniformly random 2D inputs.

Each input is a point in Cartesian plane.

• Nodes: reference vectors (x and y coordinate).

• Edges: connect immediate neighbors on the map.
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Different 2D Input Distributions

• What would the resulting SOM map look like?

• Why would it look like that?
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High-Dimensional Inputs

SOM Output Space

Input space

SOM can be trained with inputs

of arbitrary dimension.

• Dimensionality reduction:

N-D to 2-D.

• Extracts topological features.

• Used for visualization of data.
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Applications

• Data clustering and visualization.

• Optimization problems:

Traveling salesman problem.

• Semantic maps:

Natural language processing.

• Preprocessing for signal and image-processing.

1. Hand-written character recognition.

2. Phonetic map for speech recognition.
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Exercise

1. What happens when Ni(x) and α was reduced quickly

vs. slowly?

2. How would the map organize if different input distributions are

given?

3. For a fixed number of input vectors from real-world data, a

different visualization scheme is required. How would you use the

number of input vectors that best match each unit to visualize the

property of the map?
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SOM Example: Handwritten Digit Recognition

• Preprocessing for feedforward networks (supervised learning).

• Better representation for training.

• Better generalization.
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SOM Demo

Jochen Fröhlich’s Neural Networks with JAVA page:
http://fbim.fh-regensburg.de/˜saj39122/jfroehl/diplom/e-index.html

Check out the Sample Applet link.
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SOM Demo: Traveling Salesman Problem

Using Fröhlich’s SOM applet:

• 1D SOM map (1× n, where n is the number of nodes).

• 2D input space.

• Initial neighborhood radius of 8.

• Stop when radius < 0.001.

• Try 50 nodes, 20 input points.

Click on [Parameters] to bring up the config panel. After the

parameters are set, click on [Reset] in the main applet, and then

[Start learning].
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SOM Demo: Space Filling in 2D

Using Fröhlich’s SOM applet:

• 1D SOM map (1× n, where n is the number of nodes).

• 2D input space.

• Initial neighborhood radius of 100.

• Stop when radius < 0.001.

• Try 1000 nodes, and 1000 input points.
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SOM Demo: Space Filling in 3D

Using Fröhlich’s SOM applet:

• 2D SOM map (n× n, where n is the number of nodes).

• 2D input space.

• Initial neighborhood radius of 10.

• Stop when radius < 0.001.

• Try 30× 30 nodes, and 500 input points. Limit the y range to 15.

Also try 50× 50, 1000 input points, and 16 initial radius.
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Other Unsupervised Learning Algorithms

• Hebbian learning: activity-dependent plasticity

• Principal component analysis

• Independent component analysis

• Competetive learning

• Vector quantization

• Various clustering algorithms
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Course Wrap Up

• A thought: In ML, learning task is defined by humans. Can

machines define their own leanrning tasks?

• Learning vs. understanding.

• Related courses: Pattern Recognition (689), Neural Networks

(636), Cortical Networks (644), Information Retrieval, Sketch

Recognition, Robotics, ...

• Conferences: ICML, NIPS, COLT, AAAI, IJCAI, GECCO, IJCNN.
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