
Bayesian Learning

• Probabilistic approach to inference.

• Quantities of interest are governed by prob. dist. and optimal

decisions can be made by reasoning about these prob.

• Learning algorithms that directly deal with probabilities.

• Analysis framework for non-probabilistic methods.

1

Two Roles for Bayesian Methods

Provides practical learning algorithms:

• Naive Bayes learning

• Bayesian belief network learning

• Combine prior knowledge (prior probabilities) with observed data

• Requires prior probabilities

Provides useful conceptual framework

• Provides “gold standard” for evaluating other learning algorithms

• Additional insight into Occam’s razor

2

Bayes Theorem

P (h|D) =
P (D|h)P (h)

P (D)

• P (h) = prior probability that h holds, before seeing the training

data

• P (D) = prior probability of observing training data D

• P (D|h) = probability of observing D in a world where h holds

• P (h|D) = probability of h holding given observed data D

3

Choosing Hypotheses

P (h|D) =
P (D|h)P (h)

P (D)

Generally want the most probable hypothesis given the training data

Maximum a posteriori hypothesis hMAP :

hMAP = arg max
h∈H

P (h|D)

= arg max
h∈H

P (D|h)P (h)

P (D)

= arg max
h∈H

P (D|h)P (h)

4

Choosing Hypotheses

• If all hypotheses are equally probable a priori:

P (hi) = P (hj), ∀hi, hj ,

then, hMAP reduces to:

hML ≡ argmax
h∈H

P (D|h).

→ Maximum Likelihood hypothesis.

5

Bayes Theorem: Example

Does patient have cancer or not?

A patient takes a lab test and the result comes back positive.

The test returns a correct positive result in only 98% of the

cases in which the disease is actually present, and a correct

negative result in only 97% of the cases in which the

disease is not present. Furthermore, .008 of the entire

population have this cancer.

P (cancer) = P (¬cancer) =

P (⊕|cancer) = P (|cancer) =

P (⊕|¬cancer) = P (|¬cancer) =

How does P (cancer|⊕) compare to P (¬cancer|⊕)? (What is

hMAP ?
6

Basic Probability Formulas

• Product Rule: probability P (A ∧B) of a conjunction of two

events A and B:

P (A ∧B) = P (A|B)P (B) = P (B|A)P (A)

• Sum Rule: probability of a disjunction of two events A and B:

P (A ∨B) = P (A) + P (B)− P (A ∧B)

• Theorem of total probability: if events A1, . . . , An are mutually

exclusive with
Pn

i=1 P (Ai) = 1, then

P (B) =

nX
i=1

P (B|Ai)P (Ai)

7

Brute Force MAP Hypothesis Learner

1. For each hypothesis h in H , calculate the posterior probability

P (h|D) =
P (D|h)P (h)

P (D)

2. Output the hypothesis hMAP with the highest posterior

probability

hMAP = argmax
h∈H

P (h|D)

8

Relation to Concept Learning

Consider our usual concept learning task

• instance space X , hypothesis space H , training examples D

• consider the FindS learning algorithm (outputs most specific

hypothesis from the version space V SH,D)

What would Bayes rule produce as the MAP hypothesis?

Does FindS output a MAP hypothesis??

9

Concept Learning: Assumptions

Assumptions

1. Training data D is noise free.

2. Target concept c is contained in hypothesis space H .

3. No a priori reason to believe any hypothesis hi is more probable

than any other.

P (h) =
1

|H|
, ∀h ∈ H

10

Concept Learning: P (D|h)

• P (D|h): probability of observing target values

D = 〈d1, d2, ..., dn〉 for the fixed set of instances

〈x1, x2, ..., xn〉, given a world in which h holds.

• I.e., h is the correct description of the target concept c

(h(x) = c(x)).

• So, there are only two possibilities:

– P (D|h) = 1 if h is consistent with D

– P (D|h) = 0 otherwise

11

Concept Learning: P (D)

Use the theorem of total probability:

P (D) =
X

hi∈H

P (D|hi)P (hi)

=
X

hi∈V SH,D

1 ·
1

|H|
+

X
hi /∈V SH,D

0 ·
1

|H|

=
X

hi∈V SH,D

1 ·
1

|H|

=
|V SH,D|
|H|

. (1)

12

Concept Learning: Applying Bayes Rule

• In case h is inconsistent with D:

P (h|D) =
P (D|h)P (h)

P (D)
=

0 · P (h)

P (D)
= 0

• In case h is consistent with D:

P (h|D) =
P (D|h)P (h)

P (D)
=

1 · 1
|H|

P (D)

=

1
|H|

|V SH,D|
|H|

=
1

|V SH,D|
.

13

Relation to Concept Learning: Summary

Assume fixed set of instances 〈x1, . . . , xm〉

Assume D is the set of classifications D = 〈c(x1), . . . , c(xm)〉

Choose P (D|h)

• P (D|h) = 1 if h consistent with D

• P (D|h) = 0 otherwise

Choose P (h) to be uniform distribution

• P (h) = 1
|H| for all h in H

Then,

P (h|D) =

8>>><>>>:
1

|V SH,D| if h is consistent with D

0 otherwise

Every consistent hypothesis is a MAP hypothesis!

14

Evolution of P (h|D1, ...)

hypotheses hypotheses hypotheses

P(h|D1,D2)P(h|D1)P h)(

a() b() c()

• As more data sets are observed, the posterior probability of

consistent hypotheses increase.

1

|H|
−→

1

|V SH,D|
and

|H| > |V SH,D|

• In (b), hypotheses inconsistent with dataset D2 get excluded,

and so on in (c).

15

Find-S: Consistent Learner

• Every consistent learner generates a MAP hypothesis.

• Since Find-S is a consistent learner (when data set is noise free),

it produces a MAP hypothesis.

• Even though Find-S does not deal with probability at all, a

Bayesian analysis provides a way to characterize the behavior of

the algorithm.

• Also, by identifying P (h) and P (D|H), we can characterize

implicit assumptions under which the algorithm behaves

optimally.

16

Learning A Real Valued Function

hML

f

e

y

x

Consider any real-valued target function f

Training examples 〈xi, di〉, where di is noisy training value

• di = f(xi) + ei

• ei is random variable (noise) drawn independently for each xi

according to some Gaussian distribution with mean=0

Then the maximum likelihood hypothesis hML is the one that

minimizes the sum of squared errors:

hML = arg min
h∈H

mX
i=1

(di − h(xi))
2

17

Setting up the Stage

• Probability density function:

p(x0) ≡ lim
ε→0

1

ε
P (x0 ≤ x < x0 + ε)

• ML hypothesis

hML = argmax
h∈H

p(D|h)

• Training instances 〈x1, ..., xm〉 and target values

〈d1, ..., dm〉, where di = f(xi) + ei.

• Assume training examples are mutually independent given h,

hML = argmax
h∈H

mY
i=1

p(di|h)

Note: p(a, b|c) = p(a|b, c) · p(b|c) = p(a|c) · p(b|c)
18

Derivation of ML for Func. Approx.

From hML = argmaxh∈H

Qm
i=1 p(di|h):

• Since di = f(xi) + ei and ei ∼ N (0, σ2), it must be:

di ∼ N (f(xi), σ
2).

– x ∼ N (µ, σ2) means random variable x is normally

distributed with mean µ and variance σ2.

• Using pdf ofN :

hML = argmax
h∈H

mY
i=1

1
√

2πσ2
e
− (di−µ)2

2σ2 .

hML = argmax
h∈H

mY
i=1

1
√

2πσ2
e
− (di−h(xi))

2

2σ2 .

19

Derivation of ML

hML = argmax
h∈H

mY
i=1

1
√

2πσ2
e
− (di−h(xi))

2

2σ2 .

• Get rid of constant factor 1√
2πσ2

, and put on log:

hML = argmax
h∈H

ln
mY

i=1

e
− (di−h(xi))

2

2σ2

= argmax
h∈H

mX
i=1

ln e
− (di−h(xi))

2

2σ2

= argmax
h∈H

mX
i=1

−
(di − h(xi))

2

2σ2

= argmin
h∈H

mX
i=1

(di − h(xi))
2 (2)

20

Least Square as ML

Assumptions

• Observed training values di generated by adding random noise

to true target value, where noise has a normal distribution with

zero mean.

• All hypotheses are equally probable (uniform prior).

– Note: it is possible that MAP 6= ML!

Limitations

• Possible noise in xi not accounted for.

21

Learning to Predict Probabilities

Consider predicting survival probability from patient data.

Training examples 〈xi, di〉, where di is 1 or 0.

Want to train network to output a probability given xi (not 0 or 1).

In this case we can show:

hML = argmax
h∈H

mX
i=1

di ln h(xi) + (1− di) ln(1− h(xi))

Weight update rule for a sigmoid unit:

wjk ← wjk + ∆wjk

where

∆wjk = η

mX
i=1

(di − h(xi)) xijk

22

Learning to Predict Probabilities: P (D|h)

• First start with P (D|h), given

D = {〈x1, d1〉, ...〈xm, dm〉}.

P (D|h) =

mY
i=1

P (xi, di|h)

• Assuming P (xi|h) = P (xi):

P (D|h) =
mY

i=1

P (xi, di|h)

=
mY

i=1

P (di|h, xi)P (xi|h)

=

mY
i=1

P (di|h, xi)P (xi). (3)

Note: P (A, B|C) = P (A|B, C)P (B|C)23

Learning to Predict Probabilities: P (D|h)

• h is the probability of di = 1 given the sample xi, thus:

– P (di|h, xi) = h(xi) if di = 1

– P (di|h, xi) = 1− h(xi) if di = 0

• Rewriting the above:

P (di|h, xi) = h(xi)
di (1− h(xi))

1−di

• Thus:

P (D|h) =

mY
i=1

P (di|h, xi)P (xi)

=

mY
i=1

h(xi)
di (1− h(xi))

1−diP (xi)

24

Learning to Predict Probabilities: hML

hML = argmax
h∈H

mY
i=1

h(xi)
di (1− h(xi))

1−diP (xi)

= argmax
h∈H

mY
i=1

h(xi)
di (1− h(xi))

1−di (4)

since P (xi) is independent of h. Finally, taking ln:

hML = argmax
h∈H

mX
i=1

di ln h(xi) + (1− di) ln(1− h(xi)).

Note the similarity of the above to entropy (turn it into argmin, and compare to

−
P

i pi log2 pi).

25

Learning to Predict Probabilities: Gradient Descent
Letting G(h, D) = hML , and putting in a neural network with a sigmoid
output unit h(xi):

∂G(h, D)

∂wjk

=
mX

i=1

∂G(h, D)

∂h(xi)

∂h(xi)

∂wjk

=
mX

i=1

∂
Pm

p=1 dp ln h(xp) + (1 − dp) ln(1 − h(xp))

∂h(xi)

∂h(xi)

∂wjk

=
mX

i=1

∂di ln h(xi) + (1 − di) ln(1 − h(xi))

∂h(xi)

∂h(xi)

∂wjk

=
mX

i=1

di − h(xi)

h(xi)(1 − h(xi))

∂h(xi)

∂wjk

=
mX

i=1

di − h(xi)

h(xi)(1 − h(xi))
σ
′(xi)xijk

=
mX

i=1
(di − h(xi))xijk

Note:
d ln(x)

dx
= 1

x
, and σ′(xi) = h(xi)(1 − h(xi)).

26

Learning Probabilities: Weight Update

We want to maximize (not miminize), thus

∆wjk = η
∂G(h, D)

∂wjk

= η

mX
i=1

(di − h(xi))xik

wjk ← wjk + ∆wjk

Following the above rule will produce (local minima in) hML.

Compare to backpropagation!

27

Minimum Description Length

Occam’s razor: prefer the shortest hypothesis.

hMAP = argmax
h∈H

P (D|h)P (h)

hMAP = argmax
h∈H

log2 P (D|h) + log2 P (h)

hMAP = argmin
h∈H

− log2 P (D|h)− log2 P (h)

Surprisingly, the above can be interpreted as hMAP preferring

shorter hypotheses, assuming a particular encoding scheme is used

for the hypothesis and the data.

According to information theory, the shortest code length for a

message occurring with probability pi is− log2 pi bits.

28

MDL

hMAP = argmin
h∈H

− log2 P (D|h)− log2 P (h)

• LC(i): description length of message i with respect to code C .

• − log2 P (h): description length of h under optimal coding CH for the

hypothesis space H .

LCH
(h) = − log2 P (h)

• − log2 P (D|h): description length of training data D given hypothesis

h, under optimal encoding CD|H .

LCD|H (D|h) = − log2 P (D|h)

• Finally, we get:

hMAP = argmin
h∈H

LCD|H (D|h) + LCH
(h)

29

MDL

• MAP:

hMAP = argmin
h∈H

LCD|H (D|h) + LCH
(h)

• MDL: Choose hMDL such that:

hMDL = argmin
h∈H

LC1 (h) + LC2 (D|h)

which is the hypothesis that minimizes the combined length of

the hypotheis itself, and the data described by the hypothesis.

• hMDL = hMAP if C1 = CH and C2 = CD|H .

30

Bayes Optimal Classifier

• What is the most probable hypothesis given the training data, vs.

What is the most probable classification?

• Example:

– P (h1|D) = 0.4, P (h2|D) = 0.3, P (h3|D) = 0.3.

– Given a new instance x, h1(x) = 1, h2(x) = 0,

h1(x) = 0.

– In this case, probability of x being positive is only 0.4.

31

Bayes Optimal Classification

If a new instance can take classification vj ∈ V , then the probability

P (vj |D) of correct classification of new instance being vj is:

P (vj |D) =
X

hi∈H

P (vj |hi)P (hi|D)

Thus, the optimal classification is

argmax
vj∈V

X
hi∈H

P (vj |hi)P (hi|D).

32

Bayes Optimal Classifier

What is the assumption for the following to work?

P (vj |D) =
X

hi∈H

P (vj |hi)P (hi|D)

Let’s consider H = {h,¬h}:

P (v|D) = P (v, h|D) + P (v,¬h|D)

=
P (v, h, D)

P (D)
+

P (v,¬h, D)

P (D)

=
P (v|h, D)P (h|D)P (D)

P (D)

+
P (v|¬h, D)P (¬h|D)P (D)

P (D)

{if P (v|h, D) = P (v|h), etc.}

= P (v|h)P (h|D) + P (v|¬h)P (¬h|D)

33

Bayes Optimal Classifier: Example

• P (h1|D) = 0.4, P (h2|D) = 0.3, P (h3|D) = 0.3.

• Given a new instance x, h1(x) = 1, h2(x) = 0, h1(x) = 0.

– P (|h1) = 0, P (⊕|h1) = 1, etc.

– P (⊕|D) = 0.4 + 0 + 0,

P (|D) = 0 + 0.3 + 0.3 = 0.6

– Thus, argmaxv∈O{⊕,	} P (v|D) = 	.

• Bayes optimal classifiers maximize the probability that a new

instance is correctly classified, given the available data,

hypothesis space H , and prior probabilities over H .

• Some oddities: The resulting hypotheis can be outside of the

hypothesis space.

34

Gibbs Sampling

Finding argmaxv∈V P (v|D) by considering every hypothesis

h ∈ H can be infeasible. A less optimal, but error-bounded version is

Gibbs sampling:

1. Randomly pick h ∈ H with probability P (h|D).

2. Use h to classify the new instance x.

The result is that missclassification rate is at most 2× that of BOC.

Example: In concept learning, if h has a uniform prior, then randomly

picking any h from the version space will result in expected error of at

most 2× that of BOC.

35

Naive Bayes Classifier

Given attribute values 〈a1, a2, ..., an〉, give the classification

v ∈ V :

vMAP = argmax
vj∈V

P (vj |a1, a2, ..., an)

vMAP = argmax
vj∈V

P (a1, a2, ..., an|vj)P (vj)

P (a1, a2, ..., an)

= argmax
vj∈V

P (a1, a2, ..., an|vj)P (vj)

• Want to estimate P (a1, a2, ..., an|vj) and P (vj) from

training data.

36

Naive Bayes

• P (vj) is easy to calculate: Just count the frequency.

• P (a1, a2, ..., an|vj) takes the number of posible instances×
number of possible target values.

• P (a1, a2, ..., an|vj) can be approximated as

P (a1, a2, ..., an|vj) =
Y

i

P (ai|vj).

• From this naive Bayes classifier is defined as:

vNB = argmax
vj∈V

P (vj)
Y

i

P (ai|vj)

• Naive Bayes only takes number of distinct attribute values×
number of distinct target values.

37

Naive Bayes Algorithm

Naive Bayes Learn(examples)

For each target value vj

P̂ (vj)← estimate P (vj)

For each attribute value ai of each attribute a

P̂ (ai|vj)← estimate P (ai|vj)

Classify New Instance(x)

vNB = argmax
vj∈V

P̂ (vj)
Y

i

P̂ (xi|vj)

38

Naive Bayes: Example

Consider PlayTennis again, and new instance:

x = 〈Outlk = sun, Temp = cool, Humid = high, Wind = strong〉

V = {Y es, No}

Want to compute:

vNB = argmax
vj∈V

P (vj)
Y

i

P (xi|vj)

P (Y) P (sun|Y) P (cool|Y) P (high|Y) P (strong|Y) = .005

P (N) P (sun|N) P (cool|N) P (high|N) P (strong|N) = .021

Thus, vNB = No

39

Naive Bayes: Subtleties

1. Conditional independence assumption is often violated

P (a1, a2 . . . an|vj) =
Y

i

P (ai|vj)

• ...but it works surprisingly well anyway. Note don’t need

estimated posteriors P̂ (vj |x) to be correct; need only that

argmax
vj∈V

P̂ (vj)
Y

i

P̂ (ai|vj) = argmax
vj∈V

P (vj)P (a1 . . . , an|vj)

• Naive Bayes posteriors often unrealistically close to 1 or 0.

40

Naive Bayes: Subtleties

What if none of the training instances with target value vj have attribute value

ai? Then

P̂ (ai|vj) = 0, and...

P̂ (vj)
Y

i

P̂ (ai|vj) = 0

Typical solution is Bayesian estimate for P̂ (ai|vj)

P̂ (ai|vj)←
nc + mp

n + m

where

• n is number of training examples for which v = vj ,

• nc number of examples for which v = vj and a = ai

• p is prior estimate for P̂ (ai|vj)

• m is weight given to prior (i.e. number of “virtual” examples)

41

Conditional Independence

Definition: X is conditionally independent of Y given Z if
the probability distribution governing X is independent of
the value of Y given the value of Z ; that is, if

(∀xi, yj , zk)P (X = xi|Y = yj , Z = zk) = P (X = xi|Z = zk)

more compactly, we write

P (X|Y, Z) = P (X|Z)

Example: Thunder is conditionally independent of Rain, given

Lightning

P (Thunder|Rain, Lightning) = P (Thunder|Lightning)

Naive Bayes uses cond. indep. to justify

P (X, Y |Z) = P (X|Y, Z)P (Y |Z)

= P (X|Z)P (Y |Z)

42

Bayesian Belief Network
Storm

CampfireLightning

Thunder ForestFire

Campfire

C

¬C

¬S,B ¬S,¬B

0.4

0.6

0.1

0.9

0.8

0.2

0.2

0.8

S,¬B

BusTourGroup

S,B

Network represents a set of conditional independence assertions:

• Each node is asserted to be conditionally independent of its

nondescendants, given its immediate predecessors.

• Directed acyclic graph.

• Each node has a conditional probability table:

P (Node|Parents(Node)).

• BBN represents the joint probability P (N1, N2, ...) in a

compact form.
43

Bayesian Belief Network
Storm

CampfireLightning

Thunder ForestFire

Campfire

C

¬C

¬S,B ¬S,¬B

0.4

0.6

0.1

0.9

0.8

0.2

0.2

0.8

S,¬B

BusTourGroup

S,B

Represents joint probability distribution over all variables

• e.g., P (Storm, BusTourGroup, . . . , ForestF ire)

• in general,

P (Y1 = y1, . . . , Yn = yn) =
nY

i=1

P (Yi = yi|Parents(Yi))

where Parents(Yi) denotes immediate predecessors of Yi in graph

having the y values specified on the left.

• So, joint distribution is fully defined by graph, plus the

P (yi|Parents(Yi)) 44

Inference in Bayesian Networks

How can one infer the (probabilities of) values of one or more network

variables, given observed values of others?

• Bayes net contains all the information needed for this inference.

• If only one variable with unknown value, easy to infer it.

• In general case, problem is NP hard.

In practice, can succeed in many cases:

• Exact inference methods work well for some network structures.

• Monte Carlo methods “simulate” the network randomly to

calculate approximate solutions.

45

Monte Carlo for Inference in BBN

Want to calculate and arbitraty conditional probability.

1. Generate many random samples based on the given BBN.

(a) Sample from P (Storm) and P (BusTourGroup).

(b) Based on the outcome of previous step outcome1, sample

from P (Lightening|Storm = outcome1),

P (Campfire|Strom, BusTourGroup =

outcome1), etc.

(c) Combine all the outcomes to form a single sample vector.

2. Estimate the particular conditional probability based on the

samples you generated.

46

Learning of Bayesian Networks

Several variants of this learning task

• Network structure might be known or unknown

• Training examples might provide values of all network variables,

or just some

If structure known and observe all variables

• Then it’s easy as training a Naive Bayes classifier

47

Learning Bayes Nets

Suppose structure known, variables partially observable

e.g., observe ForestFire, Storm, BusTourGroup, Thunder, but not

Lightning, Campfire...

• Similar to training neural network with hidden units

• In fact, can learn network conditional probability tables using

gradient ascent!

• Converge to network h that (locally) maximizes P (D|h)

48

Gradient Ascent for Bayes Nets

Yi

A B N

Yi i1, ... yij ... } {y

ik, ...}Ui {ui1, ui2, ... , u
 are vectors.uik

yij are scalars.

Ui = {A, B, ... , N}
Parents of Yi

i

P(y ij|uik)wijk=

wijk

. . . .

k

j

conditional prob table for Y

Let wijk denote one entry in the conditional probability table for variable Yi in

the network

wijk = P (Yi = yij |Parents(Yi) = the list uik of values)

e.g., if Yi = Campfire, then uik might be

〈Storm = T, BusTourGroup = F 〉

49

Gradient Ascent for Bayes Nets

Yi

A B N

Yi i1, ... yij ... } {y

ik, ...}Ui {ui1, ui2, ... , u
 are vectors.uik

yij are scalars.

Ui = {A, B, ... , N}
Parents of Yi

i

P(y ij|uik)wijk=

wijk

. . . .

k

j

conditional prob table for Y

Perform gradient ascent ∂ ln P (D|h)
∂wijk

by repeatedly

1. update all wijk using training data D (Ph(·) means the probability

given the current BBN h):

wijk ← wijk + η
X
d∈D

Ph(Yi = yij , Ui = uik|d)

wijk

2. then, renormalize the wijk to assure:
P

j wijk = 1 and

0 ≤ wijk ≤ 1.
50

Derivation of BN Gradient Ascent

∂ ln P (D|h)

∂wijk

=
∂

∂wijk

ln
Y

d∈D

Ph(d)

=
X

d∈D

∂ ln Ph(d)

∂wijk

=
X

d∈D

1

Ph(d)

∂Ph(d)

∂wijk

=
X

d∈D

1

Ph(d)

∂

∂wijk

X
j′,k′

Ph(d|y
ij′ , u

ik′)Ph(y
ij′ |uik′)Ph(u

ik′)

=
X

d∈D

1

Ph(d)

∂

∂wijk

X
j′,k′

Ph(d|y
ij′ , u

ik′)w
ij′k′Ph(u

ik′)

=
X

d∈D

1

Ph(d)

∂

∂wijk

Ph(d|yij, uik)wijkPh(uik)

51

Derivation of BN Gradient Ascent

∂ ln P (D|h)

∂wijk

=
X

d∈D

1

Ph(d)
Ph(d|yij, uik)Ph(uik)

=
X

d∈D

1

Ph(d)

Ph(yij, uik|d)Ph(d)Ph(uik)

Ph(yij, uik)

=
X

d∈D

Ph(yij, uik|d)Ph(uik)

Ph(yij, uik)

=
X

d∈D

Ph(yij, uik|d)Ph(uik)

Ph(yij |uik)Ph(uik)

=
X

d∈D

Ph(yij, uik|d)

Ph(yij |uik)

=
X

d∈D

Ph(yij, uik|d)

wijk

52

Expectation Maximization (EM)

When to use:

• Data is only partially observable

• Unsupervised clustering (target value unobservable)

• Supervised learning (some instance attributes unobservable)

Some uses:

• Train Bayesian Belief Networks

• Unsupervised clustering (AUTOCLASS)

• Learning Hidden Markov Models

53

EM for Estimating k Means

Given:

• Instances from X generated by mixture of k Gaussian distributions

• Unknown means 〈µ1, . . . , µk〉 of the k Gaussians

• Don’t know which instance xi was generated by which Gaussian

Determine:

• Maximum likelihood estimates of 〈µ1, . . . , µk〉

Think of full description of each instance as yi = 〈xi, zi1, zi2〉, where

• zij is 1 if xi generated by jth Gaussian

• xi observable

• zij unobservable

54

EM for Estimating k Means

EM Algorithm: Pick random initial h = 〈µ1, µ2〉, then iterate

E step: Calculate the expected value E[zij] of each hidden variable zij ,

assuming the current hypothesis h = 〈µ1, µ2〉 holds.

E[zij] =
p(x = xi|µ = µj)P2

n=1 p(x = xi|µ = µn)

=
e
− 1

2σ2 (xi−µj)2

P2
n=1 e

− 1
2σ2 (xi−µn)2

M step: Calculate a new maximum likelihood hypothesis h′ = 〈µ′1, µ′2〉,
assuming the value taken on by each hidden variable zij is its expected

value E[zij] calculated above. Replace h = 〈µ1, µ2〉 by

h′ = 〈µ′1, µ′2〉.

µj ←
Pm

i=1 E[zij] xiPm
i=1 E[zij]

55

EM Algorithm

Converges to local maximum likelihood h

and provides estimates of hidden variables zij

In fact, local maximum in E[ln P (Y |h)]

• Y is complete (observable plus unobservable variables) data

• Expected value is taken over possible values of unobserved

variables in Y

56

General EM Problem

Given:

• Observed data X = {x1, . . . , xm}

• Unobserved data Z = {z1, . . . , zm}

• Parameterized probability distribution P (Y |h), where

– Y = {y1, . . . , ym} is the full data yi = xi ∪ zi

– h are the parameters

Determine:

• h that (locally) maximizes E[ln P (Y |h)]

57

General EM Method

Define likelihood function Q(h′|h) which calculates Y = X ∪ Z using

observed X and current parameters h to estimate Z

Q(h
′|h)← E[ln P (Y |h′)|h, X]

EM Algorithm:

Estimation (E) step: Calculate Q(h′|h) using the current hypothesis h

and the observed data X to estimate the probability distribution over Y .

Q(h
′|h)← E[ln P (Y |h′)|h, X]

Maximization (M) step: Replace hypothesis h by the hypothesis h′ that

maximizes this Q function.

h← argmax
h′

Q(h
′|h)

58

Derivation of k-Means

• Hypothesis h is parameterized by θ = 〈µ1...µk〉.

• Observed data X = {〈xi〉}

• Hidden variables Z = {〈zi1, ..., zik〉}:
– zik = 1 if input xi is generated by th k-th normal dist.

– For each input, k entries.

• First, start with defining ln p(Y |h).

59

Deriving lnP (Y |h)

p(yi|h
′) = p(xi, zi1, zi2, ..., zik|h

′) =
1p

2πσ2
e
− 1

2σ2
Pk

j=1 zij(xi−µ′j)2

Note that the vector 〈zi1, ..., zik〉 contains only a single 1 and all the
rest are 0.

ln P (Y |h′) = ln
mY

i=1

p(yi|h′)

=
mX

i=1

ln p(yi|h′)

=
mX

i=1

0@ln
1

√
2πσ2

−
1

2σ2

kX
j=1

zij(xi − µ
′
j)

2

1A

60

Deriving E[lnP (Y |h)]
Since P (Y |h′) is a linear function of zij , and since E[f(z)] = f(E[z]),

E[ln P (Y |h′)] = E

24 mX
i=1

0@ln
1p

2πσ2
−

1

2σ2

kX
j=1

zij(xi − µ
′
j)2

1A35

=
mX

i=1

0@ln
1p

2πσ2
−

1

2σ2

kX
j=1

E[zij](xi − µ
′
j)2

1A

Thus,

Q(h
′|h) = Q(〈µ′1, ..., µ

′
k〉|h)

=

mX
i=1

0@ln
1

√
2πσ2

−
1

2σ2

kX
j=1

E[zij](xi − µ
′
j)

2

1A
61

Finding argmaxh′ Q(h′|h)
With

E[zij] =
e
− 1

2σ2 (xi−µj)2

P2
n=1 e

− 1
2σ2 (xi−µn)2

we want to find h′ such that

argmax
h′

Q(h
′|h) = argmax

h′

mX
i=1

0@ln
1p

2πσ2
−

1

2σ2

kX
j=1

E[zij](xi − µ
′
j)2

1A

= argmin
h′

mX
i=1

kX
j=1

E[zij](xi − µ
′
j)2,

which is minimized by

µj ←
Pm

i=1 E[zij]xiPm
i=1 E[zij]

.

62

Deriving the Update Rule
Set the derivative of the quantity to be minimized to be zero:

∂

∂µ′
j

mX
i=1

kX
j=1

E[zij](xi − µ
′
j)2

=
∂

∂µ′
j

mX
i=1

E[zij](xi − µ
′
j)2

= 2
mX

i=1
E[zij](xi − µ

′
j) = 0

mX
i=1

E[zij]xi −
mX

i=1
E[zij]µ′j = 0

mX
i=1

E[zij]xi = µ
′
j

mX
i=1

E[zij]

µ
′
j =

Pm
i=1 E[zij]xiPm

i=1 E[zij]

See Bishop (1995) Neural Networks for Pattern Recognition, Oxford U Press. pp. 63–64.

63

