
Bayesian Learning

• Probabilistic approach to inference.

• Quantities of interest are governed by prob. dist. and optimal

decisions can be made by reasoning about these prob.

• Learning algorithms that directly deal with probabilities.

• Analysis framework for non-probabilistic methods.
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Two Roles for Bayesian Methods

Provides practical learning algorithms:

• Naive Bayes learning

• Bayesian belief network learning

• Combine prior knowledge (prior probabilities) with observed data

• Requires prior probabilities

Provides useful conceptual framework

• Provides “gold standard” for evaluating other learning algorithms

• Additional insight into Occam’s razor
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Bayes Theorem

P (h|D) =
P (D|h)P (h)

P (D)

• P (h) = prior probability that h holds, before seeing the training

data

• P (D) = prior probability of observing training data D

• P (D|h) = probability of observing D in a world where h holds

• P (h|D) = probability of h holding given observed data D
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Choosing Hypotheses

P (h|D) =
P (D|h)P (h)

P (D)

Generally want the most probable hypothesis given the training data

Maximum a posteriori hypothesis hMAP :

hMAP = arg max
h∈H

P (h|D)

= arg max
h∈H

P (D|h)P (h)

P (D)

= arg max
h∈H

P (D|h)P (h)
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Choosing Hypotheses

• If all hypotheses are equally probable a priori:

P (hi) = P (hj), ∀hi, hj ,

then, hMAP reduces to:

hML ≡ argmax
h∈H

P (D|h).

→ Maximum Likelihood hypothesis.
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Bayes Theorem: Example

Does patient have cancer or not?

A patient takes a lab test and the result comes back positive.

The test returns a correct positive result in only 98% of the

cases in which the disease is actually present, and a correct

negative result in only 97% of the cases in which the

disease is not present. Furthermore, .008 of the entire

population have this cancer.

P (cancer) = P (¬cancer) =

P (⊕|cancer) = P (	|cancer) =

P (⊕|¬cancer) = P (	|¬cancer) =

How does P (cancer|⊕) compare to P (¬cancer|⊕)? (What is

hMAP ?
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Basic Probability Formulas

• Product Rule: probability P (A ∧B) of a conjunction of two

events A and B:

P (A ∧B) = P (A|B)P (B) = P (B|A)P (A)

• Sum Rule: probability of a disjunction of two events A and B:

P (A ∨B) = P (A) + P (B)− P (A ∧B)

• Theorem of total probability: if events A1, . . . , An are mutually

exclusive with
Pn

i=1 P (Ai) = 1, then

P (B) =

nX
i=1

P (B|Ai)P (Ai)
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Brute Force MAP Hypothesis Learner

1. For each hypothesis h in H , calculate the posterior probability

P (h|D) =
P (D|h)P (h)

P (D)

2. Output the hypothesis hMAP with the highest posterior

probability

hMAP = argmax
h∈H

P (h|D)
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Relation to Concept Learning

Consider our usual concept learning task

• instance space X , hypothesis space H , training examples D

• consider the FindS learning algorithm (outputs most specific

hypothesis from the version space V SH,D )

What would Bayes rule produce as the MAP hypothesis?

Does FindS output a MAP hypothesis??
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Concept Learning: Assumptions

Assumptions

1. Training data D is noise free.

2. Target concept c is contained in hypothesis space H .

3. No a priori reason to believe any hypothesis hi is more probable

than any other.

P (h) =
1

|H|
, ∀h ∈ H
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Concept Learning: P (D|h)

• P (D|h): probability of observing target values

D = 〈d1, d2, ..., dn〉 for the fixed set of instances

〈x1, x2, ..., xn〉, given a world in which h holds.

• I.e., h is the correct description of the target concept c

(h(x) = c(x)).

• So, there are only two possibilities:

– P (D|h) = 1 if h is consistent with D

– P (D|h) = 0 otherwise
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Concept Learning: P (D)

Use the theorem of total probability:

P (D) =
X

hi∈H

P (D|hi)P (hi)

=
X

hi∈V SH,D

1 ·
1

|H|
+

X
hi /∈V SH,D

0 ·
1

|H|

=
X

hi∈V SH,D

1 ·
1

|H|

=
|V SH,D|
|H|

. (1)
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Concept Learning: Applying Bayes Rule

• In case h is inconsistent with D:

P (h|D) =
P (D|h)P (h)

P (D)
=

0 · P (h)

P (D)
= 0

• In case h is consistent with D:

P (h|D) =
P (D|h)P (h)

P (D)
=

1 · 1
|H|

P (D)

=

1
|H|

|V SH,D|
|H|

=
1

|V SH,D|
.
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Relation to Concept Learning: Summary

Assume fixed set of instances 〈x1, . . . , xm〉

Assume D is the set of classifications D = 〈c(x1), . . . , c(xm)〉

Choose P (D|h)

• P (D|h) = 1 if h consistent with D

• P (D|h) = 0 otherwise

Choose P (h) to be uniform distribution

• P (h) = 1
|H| for all h in H

Then,

P (h|D) =

8>>><>>>:
1

|V SH,D| if h is consistent with D

0 otherwise

Every consistent hypothesis is a MAP hypothesis!
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Evolution of P (h|D1, ...)

hypotheses hypotheses hypotheses

P(h|D1,D2)P(h|D1)P h )(

a( ) b( ) c( )

• As more data sets are observed, the posterior probability of

consistent hypotheses increase.

1

|H|
−→

1

|V SH,D|
and

|H| > |V SH,D|

• In (b), hypotheses inconsistent with dataset D2 get excluded,

and so on in (c).
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Find-S: Consistent Learner

• Every consistent learner generates a MAP hypothesis.

• Since Find-S is a consistent learner (when data set is noise free),

it produces a MAP hypothesis.

• Even though Find-S does not deal with probability at all, a

Bayesian analysis provides a way to characterize the behavior of

the algorithm.

• Also, by identifying P (h) and P (D|H), we can characterize

implicit assumptions under which the algorithm behaves

optimally.
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Learning A Real Valued Function

hML

f

e

y

x

Consider any real-valued target function f

Training examples 〈xi, di〉, where di is noisy training value

• di = f(xi) + ei

• ei is random variable (noise) drawn independently for each xi

according to some Gaussian distribution with mean=0

Then the maximum likelihood hypothesis hML is the one that

minimizes the sum of squared errors:

hML = arg min
h∈H

mX
i=1

(di − h(xi))
2
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Setting up the Stage

• Probability density function:

p(x0) ≡ lim
ε→0

1

ε
P (x0 ≤ x < x0 + ε)

• ML hypothesis

hML = argmax
h∈H

p(D|h)

• Training instances 〈x1, ..., xm〉 and target values

〈d1, ..., dm〉, where di = f(xi) + ei.

• Assume training examples are mutually independent given h,

hML = argmax
h∈H

mY
i=1

p(di|h)

Note: p(a, b|c) = p(a|b, c) · p(b|c) = p(a|c) · p(b|c)
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Derivation of ML for Func. Approx.

From hML = argmaxh∈H

Qm
i=1 p(di|h):

• Since di = f(xi) + ei and ei ∼ N (0, σ2), it must be:

di ∼ N (f(xi), σ
2).

– x ∼ N (µ, σ2) means random variable x is normally

distributed with mean µ and variance σ2.

• Using pdf ofN :

hML = argmax
h∈H

mY
i=1

1
√

2πσ2
e
− (di−µ)2

2σ2 .

hML = argmax
h∈H

mY
i=1

1
√

2πσ2
e
− (di−h(xi))

2

2σ2 .
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Derivation of ML

hML = argmax
h∈H

mY
i=1

1
√

2πσ2
e
− (di−h(xi))

2

2σ2 .

• Get rid of constant factor 1√
2πσ2

, and put on log:

hML = argmax
h∈H

ln
mY

i=1

e
− (di−h(xi))

2

2σ2

= argmax
h∈H

mX
i=1

ln e
− (di−h(xi))

2

2σ2

= argmax
h∈H

mX
i=1

−
(di − h(xi))

2

2σ2

= argmin
h∈H

mX
i=1

(di − h(xi))
2 (2)
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Least Square as ML

Assumptions

• Observed training values di generated by adding random noise

to true target value, where noise has a normal distribution with

zero mean.

• All hypotheses are equally probable (uniform prior).

– Note: it is possible that MAP 6= ML!

Limitations

• Possible noise in xi not accounted for.
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Learning to Predict Probabilities

Consider predicting survival probability from patient data.

Training examples 〈xi, di〉, where di is 1 or 0.

Want to train network to output a probability given xi (not 0 or 1).

In this case we can show:

hML = argmax
h∈H

mX
i=1

di ln h(xi) + (1− di) ln(1− h(xi))

Weight update rule for a sigmoid unit:

wjk ← wjk + ∆wjk

where

∆wjk = η

mX
i=1

(di − h(xi)) xijk
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Learning to Predict Probabilities: P (D|h)

• First start with P (D|h), given

D = {〈x1, d1〉, ...〈xm, dm〉}.

P (D|h) =

mY
i=1

P (xi, di|h)

• Assuming P (xi|h) = P (xi):

P (D|h) =
mY

i=1

P (xi, di|h)

=
mY

i=1

P (di|h, xi)P (xi|h)

=

mY
i=1

P (di|h, xi)P (xi). (3)

Note: P (A, B|C) = P (A|B, C)P (B|C)23

Learning to Predict Probabilities: P (D|h)

• h is the probability of di = 1 given the sample xi, thus:

– P (di|h, xi) = h(xi) if di = 1

– P (di|h, xi) = 1− h(xi) if di = 0

• Rewriting the above:

P (di|h, xi) = h(xi)
di (1− h(xi))

1−di

• Thus:

P (D|h) =

mY
i=1

P (di|h, xi)P (xi)

=

mY
i=1

h(xi)
di (1− h(xi))

1−diP (xi)
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Learning to Predict Probabilities: hML

hML = argmax
h∈H

mY
i=1

h(xi)
di (1− h(xi))

1−diP (xi)

= argmax
h∈H

mY
i=1

h(xi)
di (1− h(xi))

1−di (4)

since P (xi) is independent of h. Finally, taking ln:

hML = argmax
h∈H

mX
i=1

di ln h(xi) + (1− di) ln(1− h(xi)).

Note the similarity of the above to entropy (turn it into argmin, and compare to

−
P

i pi log2 pi).
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Learning to Predict Probabilities: Gradient Descent
Letting G(h, D) = hML , and putting in a neural network with a sigmoid
output unit h(xi):

∂G(h, D)

∂wjk

=
mX

i=1

∂G(h, D)

∂h(xi)

∂h(xi)

∂wjk

=
mX

i=1

∂
Pm

p=1 dp ln h(xp) + (1 − dp) ln(1 − h(xp))

∂h(xi)

∂h(xi)

∂wjk

=
mX

i=1

∂di ln h(xi) + (1 − di) ln(1 − h(xi))

∂h(xi)

∂h(xi)

∂wjk

=
mX

i=1

di − h(xi)

h(xi)(1 − h(xi))

∂h(xi)

∂wjk

=
mX

i=1

di − h(xi)

h(xi)(1 − h(xi))
σ
′(xi)xijk

=
mX

i=1
(di − h(xi))xijk

Note:
d ln(x)

dx
= 1

x
, and σ′(xi) = h(xi)(1 − h(xi)).
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Learning Probabilities: Weight Update

We want to maximize (not miminize), thus

∆wjk = η
∂G(h, D)

∂wjk

= η

mX
i=1

(di − h(xi))xik

wjk ← wjk + ∆wjk

Following the above rule will produce (local minima in) hML.

Compare to backpropagation!
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Minimum Description Length

Occam’s razor: prefer the shortest hypothesis.

hMAP = argmax
h∈H

P (D|h)P (h)

hMAP = argmax
h∈H

log2 P (D|h) + log2 P (h)

hMAP = argmin
h∈H

− log2 P (D|h)− log2 P (h)

Surprisingly, the above can be interpreted as hMAP preferring

shorter hypotheses, assuming a particular encoding scheme is used

for the hypothesis and the data.

According to information theory, the shortest code length for a

message occurring with probability pi is− log2 pi bits.
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MDL

hMAP = argmin
h∈H

− log2 P (D|h)− log2 P (h)

• LC(i): description length of message i with respect to code C .

• − log2 P (h): description length of h under optimal coding CH for the

hypothesis space H .

LCH
(h) = − log2 P (h)

• − log2 P (D|h): description length of training data D given hypothesis

h, under optimal encoding CD|H .

LCD|H (D|h) = − log2 P (D|h)

• Finally, we get:

hMAP = argmin
h∈H

LCD|H (D|h) + LCH
(h)
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MDL

• MAP:

hMAP = argmin
h∈H

LCD|H (D|h) + LCH
(h)

• MDL: Choose hMDL such that:

hMDL = argmin
h∈H

LC1 (h) + LC2 (D|h)

which is the hypothesis that minimizes the combined length of

the hypotheis itself, and the data described by the hypothesis.

• hMDL = hMAP if C1 = CH and C2 = CD|H .
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Bayes Optimal Classifier

• What is the most probable hypothesis given the training data, vs.

What is the most probable classification?

• Example:

– P (h1|D) = 0.4, P (h2|D) = 0.3, P (h3|D) = 0.3.

– Given a new instance x, h1(x) = 1, h2(x) = 0,

h1(x) = 0.

– In this case, probability of x being positive is only 0.4.
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Bayes Optimal Classification

If a new instance can take classification vj ∈ V , then the probability

P (vj |D) of correct classification of new instance being vj is:

P (vj |D) =
X

hi∈H

P (vj |hi)P (hi|D)

Thus, the optimal classification is

argmax
vj∈V

X
hi∈H

P (vj |hi)P (hi|D).
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Bayes Optimal Classifier

What is the assumption for the following to work?

P (vj |D) =
X

hi∈H

P (vj |hi)P (hi|D)

Let’s consider H = {h,¬h}:

P (v|D) = P (v, h|D) + P (v,¬h|D)

=
P (v, h, D)

P (D)
+

P (v,¬h, D)

P (D)

=
P (v|h, D)P (h|D)P (D)

P (D)

+
P (v|¬h, D)P (¬h|D)P (D)

P (D)

{if P (v|h, D) = P (v|h), etc.}

= P (v|h)P (h|D) + P (v|¬h)P (¬h|D)
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Bayes Optimal Classifier: Example

• P (h1|D) = 0.4, P (h2|D) = 0.3, P (h3|D) = 0.3.

• Given a new instance x, h1(x) = 1, h2(x) = 0, h1(x) = 0.

– P (	|h1) = 0, P (⊕|h1) = 1, etc.

– P (⊕|D) = 0.4 + 0 + 0,

P (	|D) = 0 + 0.3 + 0.3 = 0.6

– Thus, argmaxv∈O{⊕,	} P (v|D) = 	.

• Bayes optimal classifiers maximize the probability that a new

instance is correctly classified, given the available data,

hypothesis space H , and prior probabilities over H .

• Some oddities: The resulting hypotheis can be outside of the

hypothesis space.

34

Gibbs Sampling

Finding argmaxv∈V P (v|D) by considering every hypothesis

h ∈ H can be infeasible. A less optimal, but error-bounded version is

Gibbs sampling:

1. Randomly pick h ∈ H with probability P (h|D).

2. Use h to classify the new instance x.

The result is that missclassification rate is at most 2× that of BOC.

Example: In concept learning, if h has a uniform prior, then randomly

picking any h from the version space will result in expected error of at

most 2× that of BOC.
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Naive Bayes Classifier

Given attribute values 〈a1, a2, ..., an〉, give the classification

v ∈ V :

vMAP = argmax
vj∈V

P (vj |a1, a2, ..., an)

vMAP = argmax
vj∈V

P (a1, a2, ..., an|vj)P (vj)

P (a1, a2, ..., an)

= argmax
vj∈V

P (a1, a2, ..., an|vj)P (vj)

• Want to estimate P (a1, a2, ..., an|vj) and P (vj) from

training data.
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Naive Bayes

• P (vj) is easy to calculate: Just count the frequency.

• P (a1, a2, ..., an|vj) takes the number of posible instances×
number of possible target values.

• P (a1, a2, ..., an|vj) can be approximated as

P (a1, a2, ..., an|vj) =
Y

i

P (ai|vj).

• From this naive Bayes classifier is defined as:

vNB = argmax
vj∈V

P (vj)
Y

i

P (ai|vj)

• Naive Bayes only takes number of distinct attribute values×
number of distinct target values.
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Naive Bayes Algorithm

Naive Bayes Learn(examples)

For each target value vj

P̂ (vj)← estimate P (vj)

For each attribute value ai of each attribute a

P̂ (ai|vj)← estimate P (ai|vj)

Classify New Instance(x)

vNB = argmax
vj∈V

P̂ (vj)
Y

i

P̂ (xi|vj)
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Naive Bayes: Example

Consider PlayTennis again, and new instance:

x = 〈Outlk = sun, Temp = cool, Humid = high, Wind = strong〉

V = {Y es, No}

Want to compute:

vNB = argmax
vj∈V

P (vj)
Y

i

P (xi|vj)

P (Y ) P (sun|Y ) P (cool|Y ) P (high|Y ) P (strong|Y ) = .005

P (N) P (sun|N) P (cool|N) P (high|N) P (strong|N) = .021

Thus, vNB = No
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Naive Bayes: Subtleties

1. Conditional independence assumption is often violated

P (a1, a2 . . . an|vj) =
Y

i

P (ai|vj)

• ...but it works surprisingly well anyway. Note don’t need

estimated posteriors P̂ (vj |x) to be correct; need only that

argmax
vj∈V

P̂ (vj)
Y

i

P̂ (ai|vj) = argmax
vj∈V

P (vj)P (a1 . . . , an|vj)

• Naive Bayes posteriors often unrealistically close to 1 or 0.
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Naive Bayes: Subtleties

What if none of the training instances with target value vj have attribute value

ai? Then

P̂ (ai|vj) = 0, and...

P̂ (vj)
Y

i

P̂ (ai|vj) = 0

Typical solution is Bayesian estimate for P̂ (ai|vj)

P̂ (ai|vj)←
nc + mp

n + m

where

• n is number of training examples for which v = vj ,

• nc number of examples for which v = vj and a = ai

• p is prior estimate for P̂ (ai|vj)

• m is weight given to prior (i.e. number of “virtual” examples)
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Conditional Independence

Definition: X is conditionally independent of Y given Z if
the probability distribution governing X is independent of
the value of Y given the value of Z ; that is, if

(∀xi, yj , zk)P (X = xi|Y = yj , Z = zk) = P (X = xi|Z = zk)

more compactly, we write

P (X|Y, Z) = P (X|Z)

Example: Thunder is conditionally independent of Rain, given

Lightning

P (Thunder|Rain, Lightning) = P (Thunder|Lightning)

Naive Bayes uses cond. indep. to justify

P (X, Y |Z) = P (X|Y, Z)P (Y |Z)

= P (X|Z)P (Y |Z)
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Bayesian Belief Network
Storm

CampfireLightning

Thunder ForestFire

Campfire

C

¬C

¬S,B ¬S,¬B

0.4

0.6

0.1

0.9

0.8

0.2

0.2

0.8

S,¬B

BusTourGroup

S,B

Network represents a set of conditional independence assertions:

• Each node is asserted to be conditionally independent of its

nondescendants, given its immediate predecessors.

• Directed acyclic graph.

• Each node has a conditional probability table:

P (Node|Parents(Node)).

• BBN represents the joint probability P (N1, N2, ...) in a

compact form.
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Bayesian Belief Network
Storm

CampfireLightning

Thunder ForestFire

Campfire

C

¬C

¬S,B ¬S,¬B

0.4

0.6

0.1

0.9

0.8

0.2

0.2

0.8

S,¬B

BusTourGroup

S,B

Represents joint probability distribution over all variables

• e.g., P (Storm, BusTourGroup, . . . , ForestF ire)

• in general,

P (Y1 = y1, . . . , Yn = yn) =
nY

i=1

P (Yi = yi|Parents(Yi))

where Parents(Yi) denotes immediate predecessors of Yi in graph

having the y values specified on the left.

• So, joint distribution is fully defined by graph, plus the

P (yi|Parents(Yi)) 44



Inference in Bayesian Networks

How can one infer the (probabilities of) values of one or more network

variables, given observed values of others?

• Bayes net contains all the information needed for this inference.

• If only one variable with unknown value, easy to infer it.

• In general case, problem is NP hard.

In practice, can succeed in many cases:

• Exact inference methods work well for some network structures.

• Monte Carlo methods “simulate” the network randomly to

calculate approximate solutions.
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Monte Carlo for Inference in BBN

Want to calculate and arbitraty conditional probability.

1. Generate many random samples based on the given BBN.

(a) Sample from P (Storm) and P (BusTourGroup).

(b) Based on the outcome of previous step outcome1, sample

from P (Lightening|Storm = outcome1),

P (Campfire|Strom, BusTourGroup =

outcome1), etc.

(c) Combine all the outcomes to form a single sample vector.

2. Estimate the particular conditional probability based on the

samples you generated.
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Learning of Bayesian Networks

Several variants of this learning task

• Network structure might be known or unknown

• Training examples might provide values of all network variables,

or just some

If structure known and observe all variables

• Then it’s easy as training a Naive Bayes classifier
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Learning Bayes Nets

Suppose structure known, variables partially observable

e.g., observe ForestFire, Storm, BusTourGroup, Thunder, but not

Lightning, Campfire...

• Similar to training neural network with hidden units

• In fact, can learn network conditional probability tables using

gradient ascent!

• Converge to network h that (locally) maximizes P (D|h)
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Gradient Ascent for Bayes Nets

Yi

A B N

Yi i1, ... yij ... }    {y

ik, ...}Ui   {ui1, ui2, ... , u
 are vectors.uik

yij are scalars.

Ui = {A, B, ... , N}
Parents of Yi

i

P(y ij|uik)wijk=

wijk

. . . .

k

j

conditional prob table for Y

Let wijk denote one entry in the conditional probability table for variable Yi in

the network

wijk = P (Yi = yij |Parents(Yi) = the list uik of values)

e.g., if Yi = Campfire, then uik might be

〈Storm = T, BusTourGroup = F 〉
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Gradient Ascent for Bayes Nets

Yi

A B N

Yi i1, ... yij ... }    {y

ik, ...}Ui   {ui1, ui2, ... , u
 are vectors.uik

yij are scalars.

Ui = {A, B, ... , N}
Parents of Yi

i

P(y ij|uik)wijk=

wijk

. . . .

k

j

conditional prob table for Y

Perform gradient ascent ∂ ln P (D|h)
∂wijk

by repeatedly

1. update all wijk using training data D (Ph(·) means the probability

given the current BBN h):

wijk ← wijk + η
X
d∈D

Ph(Yi = yij , Ui = uik|d)

wijk

2. then, renormalize the wijk to assure:
P

j wijk = 1 and

0 ≤ wijk ≤ 1.
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Derivation of BN Gradient Ascent

∂ ln P (D|h)

∂wijk

=
∂

∂wijk

ln
Y

d∈D

Ph(d)

=
X

d∈D

∂ ln Ph(d)

∂wijk

=
X

d∈D

1

Ph(d)

∂Ph(d)

∂wijk

=
X

d∈D

1

Ph(d)

∂

∂wijk

X
j′,k′

Ph(d|y
ij′ , u

ik′ )Ph(y
ij′ |uik′ )Ph(u

ik′ )

=
X

d∈D

1

Ph(d)

∂

∂wijk

X
j′,k′

Ph(d|y
ij′ , u

ik′ )w
ij′k′Ph(u

ik′ )

=
X

d∈D

1

Ph(d)

∂

∂wijk

Ph(d|yij, uik)wijkPh(uik)
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Derivation of BN Gradient Ascent

∂ ln P (D|h)

∂wijk

=
X

d∈D

1

Ph(d)
Ph(d|yij, uik)Ph(uik)

=
X

d∈D

1

Ph(d)

Ph(yij, uik|d)Ph(d)Ph(uik)

Ph(yij, uik)

=
X

d∈D

Ph(yij, uik|d)Ph(uik)

Ph(yij, uik)

=
X

d∈D

Ph(yij, uik|d)Ph(uik)

Ph(yij |uik)Ph(uik)

=
X

d∈D

Ph(yij, uik|d)

Ph(yij |uik)

=
X

d∈D

Ph(yij, uik|d)

wijk
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Expectation Maximization (EM)

When to use:

• Data is only partially observable

• Unsupervised clustering (target value unobservable)

• Supervised learning (some instance attributes unobservable)

Some uses:

• Train Bayesian Belief Networks

• Unsupervised clustering (AUTOCLASS)

• Learning Hidden Markov Models

53

EM for Estimating k Means

Given:

• Instances from X generated by mixture of k Gaussian distributions

• Unknown means 〈µ1, . . . , µk〉 of the k Gaussians

• Don’t know which instance xi was generated by which Gaussian

Determine:

• Maximum likelihood estimates of 〈µ1, . . . , µk〉

Think of full description of each instance as yi = 〈xi, zi1, zi2〉, where

• zij is 1 if xi generated by jth Gaussian

• xi observable

• zij unobservable
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EM for Estimating k Means

EM Algorithm: Pick random initial h = 〈µ1, µ2〉, then iterate

E step: Calculate the expected value E[zij ] of each hidden variable zij ,

assuming the current hypothesis h = 〈µ1, µ2〉 holds.

E[zij ] =
p(x = xi|µ = µj)P2

n=1 p(x = xi|µ = µn)

=
e
− 1

2σ2 (xi−µj)2

P2
n=1 e

− 1
2σ2 (xi−µn)2

M step: Calculate a new maximum likelihood hypothesis h′ = 〈µ′1, µ′2〉,
assuming the value taken on by each hidden variable zij is its expected

value E[zij ] calculated above. Replace h = 〈µ1, µ2〉 by

h′ = 〈µ′1, µ′2〉.

µj ←
Pm

i=1 E[zij ] xiPm
i=1 E[zij ]
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EM Algorithm

Converges to local maximum likelihood h

and provides estimates of hidden variables zij

In fact, local maximum in E[ln P (Y |h)]

• Y is complete (observable plus unobservable variables) data

• Expected value is taken over possible values of unobserved

variables in Y
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General EM Problem

Given:

• Observed data X = {x1, . . . , xm}

• Unobserved data Z = {z1, . . . , zm}

• Parameterized probability distribution P (Y |h), where

– Y = {y1, . . . , ym} is the full data yi = xi ∪ zi

– h are the parameters

Determine:

• h that (locally) maximizes E[ln P (Y |h)]
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General EM Method

Define likelihood function Q(h′|h) which calculates Y = X ∪ Z using

observed X and current parameters h to estimate Z

Q(h
′|h)← E[ln P (Y |h′)|h, X]

EM Algorithm:

Estimation (E) step: Calculate Q(h′|h) using the current hypothesis h

and the observed data X to estimate the probability distribution over Y .

Q(h
′|h)← E[ln P (Y |h′)|h, X]

Maximization (M) step: Replace hypothesis h by the hypothesis h′ that

maximizes this Q function.

h← argmax
h′

Q(h
′|h)
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Derivation of k-Means

• Hypothesis h is parameterized by θ = 〈µ1...µk〉.

• Observed data X = {〈xi〉}

• Hidden variables Z = {〈zi1, ..., zik〉}:
– zik = 1 if input xi is generated by th k-th normal dist.

– For each input, k entries.

• First, start with defining ln p(Y |h).
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Deriving lnP (Y |h)

p(yi|h
′) = p(xi, zi1, zi2, ..., zik|h

′) =
1p

2πσ2
e
− 1

2σ2
Pk

j=1 zij(xi−µ′j)2

Note that the vector 〈zi1, ..., zik〉 contains only a single 1 and all the
rest are 0.

ln P (Y |h′) = ln
mY

i=1

p(yi|h′)

=
mX

i=1

ln p(yi|h′)

=
mX

i=1

0@ln
1

√
2πσ2

−
1

2σ2

kX
j=1

zij(xi − µ
′
j)

2

1A
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Deriving E[lnP (Y |h)]
Since P (Y |h′) is a linear function of zij , and since E[f(z)] = f(E[z]),

E[ln P (Y |h′)] = E

24 mX
i=1

0@ln
1p

2πσ2
−

1

2σ2

kX
j=1

zij(xi − µ
′
j)2

1A35

=
mX

i=1

0@ln
1p

2πσ2
−

1

2σ2

kX
j=1

E[zij ](xi − µ
′
j)2

1A

Thus,

Q(h
′|h) = Q(〈µ′1, ..., µ

′
k〉|h)

=

mX
i=1

0@ln
1

√
2πσ2

−
1

2σ2

kX
j=1

E[zij ](xi − µ
′
j)

2

1A
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Finding argmaxh′ Q(h′|h)
With

E[zij ] =
e
− 1

2σ2 (xi−µj)2

P2
n=1 e

− 1
2σ2 (xi−µn)2

we want to find h′ such that

argmax
h′

Q(h
′|h) = argmax

h′

mX
i=1

0@ln
1p

2πσ2
−

1

2σ2

kX
j=1

E[zij ](xi − µ
′
j)2

1A

= argmin
h′

mX
i=1

kX
j=1

E[zij ](xi − µ
′
j)2,

which is minimized by

µj ←
Pm

i=1 E[zij ]xiPm
i=1 E[zij ]

.
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Deriving the Update Rule
Set the derivative of the quantity to be minimized to be zero:

∂

∂µ′
j

mX
i=1

kX
j=1

E[zij ](xi − µ
′
j)2

=
∂

∂µ′
j

mX
i=1

E[zij ](xi − µ
′
j)2

= 2
mX

i=1
E[zij ](xi − µ

′
j) = 0

mX
i=1

E[zij ]xi −
mX

i=1
E[zij ]µ′j = 0

mX
i=1

E[zij ]xi = µ
′
j

mX
i=1

E[zij ]

µ
′
j =

Pm
i=1 E[zij ]xiPm

i=1 E[zij ]

See Bishop (1995) Neural Networks for Pattern Recognition, Oxford U Press. pp. 63–64.
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