Hypothesis Testing

o Empirically evaluating accuracy of hypotheses: important activity
in ML.
o Three questions:

— Given observed accuracy over a sample set, how well does
this estimate apply over additional samples?

— Given a hypothesis outperforming another, how probable is it
that this hypothesis is more accurate in general?

— With limited data, how to learn and also estimate its

accuracy?

o Use of statistical methods to put a bound on the error between
the estimated and the true accuracy.

Issues

Learn hypothesis on limited data, and estimate future accuracy:

e Bias in the estimate:

— The training data is a subset of the instance space, and may
introduce bias: the estimated error may be different from the
true error.

e Variance in the estimate:

— Even though the estimate may be unbiased, there can be a
large variance in the accuracy over different test sets.

— Usually, smaller training sets lead to larger variance.

Evaluation of Performance of Learned /

e Want to decide whether to use h or not: Want to understand the
accuracy of the hypothesis learned from a limited-size training set.

e Evaluation may be part of the ML algorithm itself.

Trade-off Between Bias and Variance
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® |ess parameters — less accurate, but variance over different test

sets is reduced.

e More parameters — more accurate, but variance over different

test sets is increased.



Topics

o FEvaluating hypotheses (estimate accuracy of a hypothesis).

e Compare accuracy of two hypotheses.

e Compare accuracy of two algorithms when data set is limited.

Probability Distribution of Sample Mean

Instance space X

Ky 1, u

From instance space X, draw a small sample set .S; of size n.
e For different sample sets S;, the mean will differ:
1
=Y
n
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o The questions are:

- Is 1y = px (where pux is the true mean over X)?

— How is 1; distributed (P (1), for o € {pe1, 2, ... fin })?

Estimating Hypothesis Accuracy

General setup:

e X: instance space.

e D: prob. distribution of encountering = € X.

Task:

X ={1,2,3,4}, and each numbers are equally likely to occur (i.e.,

e Given hypothesis h and data set of size n from distribution D,

what is the best estimate of the accuracy of h on future instances

from the same distribution?

e What is the probable error in the accuracy estimate?

Example of Sampling Distribution of the Mean®

D is a uniform distribution). Let's sample with n. = 2.

Samples of size 2 Sample means

Observation Observation
1 2 3 4 1 2 3 4
1st\2nd 1st\2nd
1 1,1 1,2 1,3 1,4 1 1 1.5 2.0 2.5
2 2,1 2,2 2,3 2,4 2 1.5 2.0 2.5 3.0
3 3,1 3,2 3,3 3,4 3 2.0 2.5 3.0 3.5
4 4.1 4,2 4,3 4.4 4 2.5 3.0 3.5 4.0

@ From Kachigan (1991)




Sample Distribution vs. Sampling Distribution of the
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Depending on how you sample your data, your sample mean can
end up being different values.

The sample mean has a distribution of its own centered at the
actual population mean (Zx:{l 2,3,4} %x = 2.9).

True mean /; and sample mean /.

P(W)

With a particular probability p, (s is within a particular range 7
from the true mean L.

In other words, if you pick any sample mean (5, with the

probability p, the true mean is within the range 7.

Given a fixed probability p = 0.95, the range 7 is determined by
the variance o, .
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Sampling Distribution of the Mean

e Underlying distribution with mean 1 and std o.

e Distribution of sample mean (s has mean ft;,,, = p and std:

and tends to the normal distribution as 1 grows.

e |Interpretation:

— When you get a particular sample mean [ts, you know it is
distributed like ~ N (1, 0, ).

— With more samples, o, s reduces, so you're more confident

about your particular (s being close to the true mean L.
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Sample Error and True Error

Sample error:

e Sample error of hypothesis /. based on sample set S of size n:
1
errors(h) = — % 8(f(2), h(x)),
reS

where f(+) is the target function, and d(a, b) = 1ifa = b and
0if a # b.

e In other words, errorg(h) is the mean error of hypothesis /.

True error:

e True error of hypothesis h is the probability that / will misclassify
a single example drawn from the distribution D:

errorp(h) = Prpep|f(z) # h(x)]
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Confidence Interval
How good an estimator of errorp (h) is provided by
errorg(h)?

Want to estimate true error based on sample S of . examples
according to distribution D.

h commits 7 errors: errorg(h) = r/n.

With approx. 95% probability, true error is within the interval:

errorg(h)(1 — errorg(h)) '

errorg(h) £ 1.96\/

n
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Confidence Interval Example

S of size n = 40.
h committing » = 12 errors.
errorg(h) = 12/40 = 0.30 (mean error, or error rate).

95% confidence interval:

0.3 x (1.0 — 0.3)
40

=0.30£0.14

0.30 + 1.96\/

Note: if 7 is high, even when 7/ may be the same, the interval size
would reduce.
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Confidence Interval (95%)

95%
P(X)

_

1.966 X
m

Normal distribution with mean p and std o.
95% of the area lies within ==1.960.
Different constant factors for 99%, etc.
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Sampling Theory Basics: Summary
Random variable: variable that can take on values with certain probability.
Probability distribution: Pr(Y = ;).
Expected value: E[Y'| = > y;Pr(Y = ;).
Variance: Var(Y) = E[(Y — E(Y))?] = E[Y?] — E[Y]%
Standard deviation: \/W(Y) .

Binomial distribution: binary outcome, with probability p of 0 and (1 — p)
for 1; Probability of 7 1’s with n samples.

Normal distribution

Central limit theorem: sum of iid random variables tend to the normal
distribution.

Estimator is a random variable Y that estimates parameter p.
Estimation bias: £(Y") — p.

N % confidence interval estimate of p: interval that includes true p with
N % probability. 16



Binomial Distribution: e.g., Coin Toss

014 Binomial distribution for n =40, p =0.3
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Outcome itself is described by a random variable Y € { Head, T'ail }.

P(Y = Head) = pand P(Y = Tail) = (1 — p).

Probability of observing 7 heads out of 1 coin tosses (this value
corresponds to a radom variable R):

Pr(R=r) = — p (1 —p) "

n!
ri(n —r)!

Pr(R = r) can be seen as the probability of observing 7 errors in a
sample size of 1 (for binary targeg %ategories).

Estimation Bias
Estimation bias of an estimator Y for a parameter p is:
EY]—p

Variance in Estimation

errorg(h) = %
Stdlr] = /np(1—p)
Stdlerrors(h)] = Std {;} = Sti[r]

_ Vnrp(-p) _ [p(1—p)

- \/errors(h)(l —errors(h))

n
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Mean and Variance in Binomical Distributions

EY]|=X"yPr(Y =y;) =np
Var[Y] = E[(Y — E[Y])?] = np(1 — p)

Errors, in Terms of Bionomial Distribution

errorg(h) =

r
n

errorp = p
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Normal Distribution

Normal distribution with mean 0, standard deviation 1
04 T T T T
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Mean E/[X| = p, and variance Var[X]| = o~.
Probability density:
1 —

) = oos

Probability of falling between interval [a, b]:

/ab p(x)dz

Central limit theorem: sum of a large number of iid random variables (the

sum itself is a random variable) tends to Normal.
20



Confidence Interval in Normal Distributions Confidence Intervals for Different %

04
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o NY% of probability mass in Normal distributions are within: 03
025

Ul; :
0.1 |
0.05 -
071
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e That means, a randomly drawn value y will be within the above
interval with a N % chance. 80% of area (probability) lies in ;v + 1.280

e In other words, if you pick any value y, with N % chance, the N% of area (probability) lies in po = zy o

ill be within the interval:
mean will be within the inferva N%: | 50% 68% 80% 90% 95%  98%  99%

y=*tzno. zy: | 067 100 128 1.64 196 233 258
21 22
Calculating Confidence Intervals Two-Sided vs. One-Sided Bounds

1. Pick parameter p to estimate

e errorp(h)

2. Choose an estimator

e errorg(h) e Two-sided: Lower and upper bound with 100(1 — «¢/2)%
3. Determine probability distribution that governs estimator confidence
e Distribution of error g (h) can be approximated by Normal ® One-sided: Lower bound only (or upper bound only) with
distribution when n is large 100(1 - a)%.

_ . . . ,,
4. Find interval (L, U) such that N% of probability mass falls in the What is the probability that error p (h) is at most U'?
interval

e® Use table of zy values
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Difference in Error of Two Hypotheses
Test b1 on sample S, test 2 on So

1. Pick parameter to estimate
d = errorp(h1) — errorp(h2)
2. Choose an estimator
d= errors, (h1) — errors, (h2)

3. Determine probability distribution that governs estimator

errorg, (h1)(1 — errorg, (h1)) N errorg, (ho)(1 — errors2(h2))
(o]
d ni n2

4. Find interval (L, U) such that N% of probability mass falls in the interval

~ error (h1)(1 — error (h1)) error (ho)(1 — error (h2))
diZNJ Sq 1 Sq 1 n So So

ni no
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Paired ¢-Test for Comparing /. 4 and h

1. Partiion data into F disjoint test sets 'y , T'o, . . . , T, of equal size, where this size is at least
30.

2. For i from1to k, do

6; «— errorp. (h — errorp. (h
i T,\"A T,\"B

3. Return the value &, where

N % confidence interval estimate for d:

1 k .
ss = _ 6; — O
g k(k—1)i§1(l )

Note: 61’ approximately Normally distributed, and t differ for different sample size, as well as %.
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Hypothesis Testing
e What is the prob. that errorp (h1) > errorp(h2)?

e Eveniferrorg, (h1) > errorg,(h2), there is a chance that
errorp(h1) < errorp(h2).

e E.g., what is the chance of d > 0 when d=0.1
(errorg, (h1) = 0.3 and errorg, (h2) = 0.2)?

~d<d+01=E[d+0.1=pu;+0.1

—d<pig+1.64 % 0;5=pq+1.64x 0.061

- 290y, = 1.64 for two-sided interval, so the chance is 95%.
e Better to think how to reject the null hypothesis:

— Null hypothesis Hg: d = 0

— Alternative hypothesis H1: d > 0 (must ensure
P(d<0)=0)
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Comparing learning algorithms L 4 and L

What we'd like to estimate:
Escplerrorp(La(S)) — errorp(Lp(S))]

where L(S) is the hypothesis output by learner L using training set S, i.e., the
expected difference in true error between hypotheses output by learners L 4
and L g, when trained using randomly selected training sets S drawn according
to distribution D.

But, given limited data D, what is a good estimator?

e could partition D into training set S and training set 7|y, and measure
errorr, (La(So)) — errorr, (Lp(So))

® even better, repeat this many times and average the results (next slide)
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Comparing learning algorithms L 4 and L

1. Partition data D into k disjoint test sets 771, T5, ..., T} of
equal size, where this size is at least 30.
2. Fort from 1 to k, do
use T7 for the test set, and the remaining data for training set .S;
o S; — {Do—T;}
® ha«— LA(S;)
e hp «— Lp(S;)
® §; « errort;(ha) — errort,(hp)
3. Return the value 5_, where

) &;

1

=

k
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Comparing learning algorithms L 4 and L

Notice we'd like to use the paired ¢ test on J to obtain a confidence
interval, but not really correct, because the training sets in this
algorithm are not independent (they overlap!).

More correct to view algorithm as producing an estimate of

Escpglerrorp(La(S)) — errorp(Lp(95))]

instead of

Escplerrorp(La(S)) — errorp(Lp(S))]

but even this approximation is better than no comparison.
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