
Hypothesis Testing

• Empirically evaluating accuracy of hypotheses: important activity

in ML.

• Three questions:

– Given observed accuracy over a sample set, how well does

this estimate apply over additional samples?

– Given a hypothesis outperforming another, how probable is it

that this hypothesis is more accurate in general?

– With limited data, how to learn and also estimate its

accuracy?

• Use of statistical methods to put a bound on the error between

the estimated and the true accuracy.
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Evaluation of Performance of Learned h

• Want to decide whether to use h or not: Want to understand the

accuracy of the hypothesis learned from a limited-size training set.

• Evaluation may be part of the ML algorithm itself.
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Issues

Learn hypothesis on limited data, and estimate future accuracy:

• Bias in the estimate:

– The training data is a subset of the instance space, and may

introduce bias: the estimated error may be different from the

true error.

• Variance in the estimate:

– Even though the estimate may be unbiased, there can be a

large variance in the accuracy over different test sets.

– Usually, smaller training sets lead to larger variance.
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Trade-off Between Bias and Variance
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DATA High bias, low variance Low bias, high variance

• Less parameters→ less accurate, but variance over different test

sets is reduced.

• More parameters→ more accurate, but variance over different

test sets is increased.
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Topics

• Evaluating hypotheses (estimate accuracy of a hypothesis).

• Compare accuracy of two hypotheses.

• Compare accuracy of two algorithms when data set is limited.
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Estimating Hypothesis Accuracy

General setup:

• X : instance space.

• D: prob. distribution of encountering x ∈ X .

Task:

• Given hypothesis h and data set of size n from distributionD,

what is the best estimate of the accuracy of h on future instances

from the same distribution?

• What is the probable error in the accuracy estimate?
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Probability Distribution of Sample Mean

S1 S2

µ1 µ2

Instance space X

µ

P(µ)

From instance space X , draw a small sample set Si of size n.

• For different sample sets Si, the mean will differ:

µi ≡
1

n

X
x∈Si

x

• The questions are:

– Is µi = µX (where µX is the true mean over X)?

– How is µi distributed (P (µ), for µ ∈ {µ1, µ2, ...µn})?
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Example of Sampling Distribution of the Meana

X = {1, 2, 3, 4}, and each numbers are equally likely to occur (i.e.,

D is a uniform distribution). Let’s sample with n = 2.

Samples of size 2
Observation

1st\2nd
1 2 3 4

1 1,1 1,2 1,3 1,4

2 2,1 2,2 2,3 2,4

3 3,1 3,2 3,3 3,4

4 4,1 4,2 4,3 4,4

Sample means
Observation

1st\2nd
1 2 3 4

1 1 1.5 2.0 2.5

2 1.5 2.0 2.5 3.0

3 2.0 2.5 3.0 3.5

4 2.5 3.0 3.5 4.0

a
From Kachigan (1991)
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Sample Distribution vs. Sampling Distribution of the

Mean
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• Depending on how you sample your data, your sample mean can

end up being different values.

• The sample mean has a distribution of its own centered at the

actual population mean (
P

x={1,2,3,4}
1
4
x = 2.5).

9

Sampling Distribution of the Mean

• Underlying distribution with mean µ and std σ.

• Distribution of sample mean µs has mean µµs = µ and std:

σµs =
σ
√

n
,

and tends to the normal distribution as n grows.

• Interpretation:

– When you get a particular sample mean µs, you know it is

distributed like∼ N (µ, σµs ).

– With more samples, σµs reduces, so you’re more confident

about your particular µs being close to the true mean µ.
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True mean µ and sample mean µs

µs

P(µ)

µ

p
r

µs

P(µ)

µ

• With a particular probability p, µs is within a particular range r

from the true mean µ.

• In other words, if you pick any sample mean µs, with the

probability p, the true mean is within the range r.

• Given a fixed probability p = 0.95, the range r is determined by

the variance σµs .
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Sample Error and True Error

Sample error:

• Sample error of hypothesis h based on sample set S of size n:

errorS(h) ≡
1

n

X
x∈S

δ(f(x), h(x)),

where f(·) is the target function, and δ(a, b) = 1 if a = b and

0 if a 6= b.

• In other words, errorS(h) is the mean error of hypothesis h.

True error:

• True error of hypothesis h is the probability that h will misclassify

a single example drawn from the distributionD:

errorD(h) ≡ Prx∈D[f(x) 6= h(x)]
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Confidence Interval

• How good an estimator of errorD(h) is provided by

errorS(h)?

• Want to estimate true error based on sample S of n examples

according to distributionD.

• h commits r errors: errorS(h) = r/n.

• With approx. 95% probability, true error is within the interval:

errorS(h)± 1.96

r
errorS(h)(1− errorS(h))

n
.
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Confidence Interval (95%)
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• Normal distribution with mean µ and std σ.

• 95% of the area lies within±1.96σ.

• Different constant factors for 99%, etc.
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Confidence Interval Example

• S of size n = 40.

• h committing r = 12 errors.

• errorS(h) = 12/40 = 0.30 (mean error, or error rate).

• 95% confidence interval:

0.30± 1.96

r
0.3× (1.0− 0.3)

40

= 0.30± 0.14

Note: if n is high, even when r/n may be the same, the interval size

would reduce.
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Sampling Theory Basics: Summary

• Random variable: variable that can take on values with certain probability.

• Probability distribution: Pr(Y = yi).

• Expected value: E[Y ] =
P

i yiPr(Y = yi).

• Variance: V ar(Y ) = E[(Y − E(Y ))2] = E[Y 2]− E[Y ]2 .

• Standard deviation:
p

V ar(Y ).

• Binomial distribution: binary outcome, with probability p of 0 and (1− p)

for 1; Probability of r 1’s with n samples.

• Normal distribution

• Central limit theorem: sum of iid random variables tend to the normal

distribution.

• Estimator is a random variable Y that estimates parameter p.

• Estimation bias: E(Y )− p.

• N% confidence interval estimate of p: interval that includes true p with

N% probability. 16



Binomial Distribution: e.g., Coin Toss
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Binomial distribution for n = 40, p = 0.3

• Outcome itself is described by a random variable Y ∈ {Head, Tail}.

• P (Y = Head) = p and P (Y = Tail) = (1− p).

• Probability of observing r heads out of n coin tosses (this value

corresponds to a radom variable R):

Pr(R = r) =
n!

r!(n− r)!
p

r
(1− p)

(n−r)
.

• Pr(R = r) can be seen as the probability of observing r errors in a

sample size of n (for binary target categories).
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Mean and Variance in Binomical Distributions

• E[Y ] ≡
Pn

i=1 yiPr(Y = yi) = np

• V ar[Y ] ≡ E[(Y − E[Y ])2] = np(1− p)

Errors, in Terms of Bionomial Distribution

• errorS(h) = r
n

• errorD = p
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Estimation Bias

• Estimation bias of an estimator Y for a parameter p is:

E[Y ]− p

Variance in Estimation

errorS(h) =
r

n

Std[r] =
q

np(1− p)

Std[errorS(h)] = Std

»
r

n

–
=

Std[r]

n

=

p
np(1− p)

n
=

s
p(1− p)

n

≈

s
errorS(h)(1− errorS(h))

n
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Normal Distribution
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Normal distribution with mean 0, standard deviation 1

• Mean E[X] = µ, and variance V ar[X] = σ2 .

• Probability density:

p(x) =
1

√
2πσ2

e
− 1

2

“
x−µ

σ

”2

• Probability of falling between interval [a, b]:Z b

a

p(x)dx

• Central limit theorem: sum of a large number of iid random variables (the

sum itself is a random variable) tends to Normal.
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Confidence Interval in Normal Distributions

• N% of probability mass in Normal distributions are within:

µ± zNσ.

• That means, a randomly drawn value y will be within the above

interval with a N% chance.

• In other words, if you pick any value y, with N% chance, the

mean will be within the interval:

y ± zNσ.
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Confidence Intervals for Different %
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80% of area (probability) lies in µ± 1.28σ

N% of area (probability) lies in µ± zNσ

N%: 50% 68% 80% 90% 95% 98% 99%

zN : 0.67 1.00 1.28 1.64 1.96 2.33 2.58
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Calculating Confidence Intervals

1. Pick parameter p to estimate

• errorD(h)

2. Choose an estimator

• errorS(h)

3. Determine probability distribution that governs estimator

• Distribution of errorS(h) can be approximated by Normal

distribution when n is large

4. Find interval (L, U ) such that N% of probability mass falls in the

interval

• Use table of zN values
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Two-Sided vs. One-Sided Bounds
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• Two-sided: Lower and upper bound with 100(1− α/2)%

confidence

• One-sided: Lower bound only (or upper bound only) with

100(1− α)%.

– What is the probability that errorD(h) is at most U?
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Difference in Error of Two Hypotheses

Test h1 on sample S1 , test h2 on S2

1. Pick parameter to estimate

d ≡ errorD(h1)− errorD(h2)

2. Choose an estimator

d̂ ≡ errorS1 (h1)− errorS2 (h2)

3. Determine probability distribution that governs estimator

σ
d̂
≈

vuut errorS1
(h1)(1 − errorS1

(h1))

n1
+

errorS2
(h2)(1 − errorS2

(h2))

n2

4. Find interval (L, U ) such that N% of probability mass falls in the interval

d̂±zN

vuut errorS1
(h1)(1 − errorS1

(h1))

n1
+

errorS2
(h2)(1 − errorS2

(h2))

n2
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Hypothesis Testing

• What is the prob. that errorD(h1) > errorD(h2)?

• Even if errorS1 (h1) > errorS2 (h2), there is a chance that

errorD(h1) < errorD(h2).

• E.g., what is the chance of d > 0 when d̂ = 0.1

(errorS1 (h1) = 0.3 and errorS2 (h2) = 0.2)?

– d̂ < d + 0.1 = E[d̂] + 0.1 = µd̂ + 0.1

– d̂ < µd + 1.64× σd̂ = µd + 1.64× 0.061

– z90% = 1.64 for two-sided interval, so the chance is 95%.

• Better to think how to reject the null hypothesis:

– Null hypothesis H0: d = 0

– Alternative hypothesis H1: d > 0 (must ensure

P (d < 0) = 0)
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Paired t-Test for Comparing hA and hB

1. Partition data into k disjoint test sets T1, T2, . . . , Tk of equal size, where this size is at least

30.

2. For i from 1 to k, do

δi ← errorTi
(hA) − errorTi

(hB)

3. Return the value δ̄, where

δ̄ ≡
1

k

kX
i=1

δi

N% confidence interval estimate for d:

δ̄ ± tN,(k−1) s
δ̄

s
δ̄
≡

vuuut 1

k(k − 1)

kX
i=1

(δi − δ̄)2

Note: δi approximately Normally distributed, and t differ for different sample size, as well as %.
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Comparing learning algorithms LA and LB

What we’d like to estimate:

ES⊂D[errorD(LA(S))− errorD(LB(S))]

where L(S) is the hypothesis output by learner L using training set S, i.e., the

expected difference in true error between hypotheses output by learners LA

and LB , when trained using randomly selected training sets S drawn according

to distributionD.

But, given limited data D0 , what is a good estimator?

• could partition D0 into training set S and training set T0 , and measure

errorT0 (LA(S0))− errorT0 (LB(S0))

• even better, repeat this many times and average the results (next slide)
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Comparing learning algorithms LA and LB

1. Partition data D0 into k disjoint test sets T1, T2, . . . , Tk of

equal size, where this size is at least 30.

2. For i from 1 to k, do

use Ti for the test set, and the remaining data for training set Si

• Si ← {D0 − Ti}
• hA ← LA(Si)

• hB ← LB(Si)

• δi ← errorTi
(hA)− errorTi

(hB)

3. Return the value δ̄, where

δ̄ ≡
1

k

kX
i=1

δi
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Comparing learning algorithms LA and LB

Notice we’d like to use the paired t test on δ̄ to obtain a confidence

interval, but not really correct, because the training sets in this

algorithm are not independent (they overlap!).

More correct to view algorithm as producing an estimate of

ES⊂D0 [errorD(LA(S))− errorD(LB(S))]

instead of

ES⊂D[errorD(LA(S))− errorD(LB(S))]

but even this approximation is better than no comparison.
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