Hypothesis Testing

- Empirically evaluating accuracy of hypotheses: important activity in ML.
- Three questions:
 - Given observed accuracy over a sample set, how well does this estimate apply over additional samples?
 - Given a hypothesis outperforming another, how probable is it that this hypothesis is more accurate in general?
 - With limited data, how to learn and also estimate its accuracy?
- Use of statistical methods to put a **bound** on the error between the estimated and the true accuracy.

1

Issues

Learn hypothesis on limited data, and estimate future accuracy:

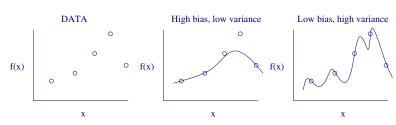
- Bias in the estimate:
 - The training data is a subset of the instance space, and may introduce bias: the estimated error may be different from the true error.
- Variance in the estimate:
 - Even though the estimate may be unbiased, there can be a large variance in the accuracy over different test sets.
 - Usually, smaller training sets lead to larger variance.

Evaluation of Performance of Learned h

- Want to decide whether to use h or not: Want to understand the accuracy of the hypothesis learned from a limited-size training set.
- Evaluation may be part of the ML algorithm itself.

2

Trade-off Between Bias and Variance



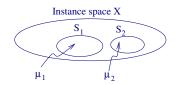
- Less parameters → less accurate, but variance over different test sets is reduced.
- More parameters → more accurate, but variance over different test sets is increased.

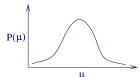
Topics

- Evaluating hypotheses (estimate accuracy of a hypothesis).
- Compare accuracy of two hypotheses.
- Compare accuracy of two algorithms when data set is limited.

5

Probability Distribution of Sample Mean





From instance space X, draw a small sample set S_i of size n.

• For different sample sets S_i , the mean will differ:

$$\mu_i \equiv \frac{1}{n} \sum_{x \in S_i} x$$

- The questions are:
 - Is $\mu_i = \mu_X$ (where μ_X is the true mean over X)?
 - How is μ_i distributed $(P(\mu), \text{ for } \mu \in \{\mu_1, \mu_2, ... \mu_n\})$?

Estimating Hypothesis Accuracy

General setup:

- *X*: instance space.
- \mathcal{D} : prob. distribution of encountering $x \in X$.

Task:

- Given hypothesis h and data set of size n from distribution \mathcal{D} , what is the best estimate of the accuracy of h on future instances from the same distribution?
- What is the probable error in the accuracy estimate?

6

Example of Sampling Distribution of the Mean^a

 $X=\{1,2,3,4\}$, and each numbers are equally likely to occur (i.e., $\mathcal D$ is a uniform distribution). Let's sample with n=2.

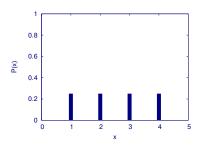
Samples of size 2

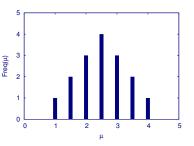
Sample means

Observation 1st\2nd	1	2	3	4	Observation 1st\2nd	1	2	3	4
1	1,1	1,2	1,3	1,4	1	1	1.5	2.0	2.5
2	2,1	2,2	2,3	2,4	2	1.5	2.0	2.5	3.0
3	3,1	3,2	3,3	3,4	3	2.0	2.5	3.0	3.5
4	4,1	4,2	4,3	4,4	4	2.5	3.0	3.5	4.0

a From Kachigan (1991)

Sample Distribution vs. Sampling Distribution of the Mean

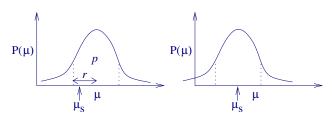




- Depending on how you sample your data, your sample mean can end up being different values.
- The sample mean has a distribution of its own centered at the actual population mean ($\sum_{x=\{1,2,3,4\}} \frac{1}{4}x=2.5$).

9

True mean μ and sample mean μ_s



- With a particular probability p, μ_s is within a particular range r from the true mean μ .
- In other words, if you pick any sample mean μ_s , with the probability p, the true mean is within the range r.
- $\bullet \,$ Given a fixed probability p=0.95, the range r is determined by the variance $\sigma_{\mu_{S}}.$

Sampling Distribution of the Mean

- Underlying distribution with mean μ and std σ .
- Distribution of sample mean μ_s has mean $\mu_{\mu_s} = \mu$ and std:

$$\sigma_{\mu_s} = \frac{\sigma}{\sqrt{n}},$$

and tends to the normal distribution as n grows.

- Interpretation:
 - When you get a particular sample mean μ_s , you know it is distributed like $\sim \mathcal{N}(\mu, \sigma_{\mu_s})$.
 - With more samples, $\sigma_{\mu s}$ reduces, so you're more **confident** about your particular μ_s being close to the true mean μ .

10

Sample Error and True Error

Sample error:

• Sample error of hypothesis h based on sample set S of size n:

$$error_S(h) \equiv \frac{1}{n} \sum_{x \in S} \delta(f(x), h(x)),$$

where $f(\cdot)$ is the target function, and $\delta(a,b)=1$ if a=b and 0 if $a\neq b$.

• In other words, $error_S(h)$ is the **mean error** of hypothesis h.

True error:

• True error of hypothesis h is the probability that h will misclassify a single example drawn from the distribution \mathcal{D} :

$$error_{\mathcal{D}}(h) \equiv \Pr_{x \in \mathcal{D}}[f(x) \neq h(x)]$$

Confidence Interval

- How good an estimator of $error_{\mathcal{D}}(h)$ is provided by $error_{S}(h)$?
- Want to estimate true error based on sample S of n examples according to distribution \mathcal{D} .
- h commits r errors: $error_S(h) = r/n$.
- With approx. 95% probability, true error is within the interval:

$$error_S(h) \pm 1.96 \sqrt{\frac{error_S(h)(1 - error_S(h))}{n}}.$$

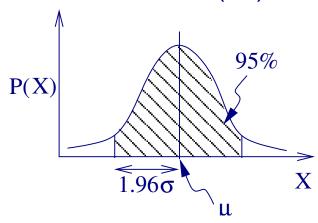
13

Confidence Interval Example

- S of size n=40.
- h committing r=12 errors.
- $error_S(h) = 12/40 = 0.30$ (mean error, or error rate).
- 95% confidence interval:

$$0.30 \pm 1.96 \sqrt{\frac{0.3 \times (1.0 - 0.3)}{40}}$$
$$= 0.30 \pm 0.14$$

Note: if n is high, even when r/n may be the same, the interval size would reduce.



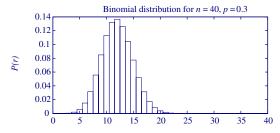
- Normal distribution with mean μ and std σ .
- 95% of the area lies within $\pm 1.96\sigma$.
- Different constant factors for 99%, etc.

14

Sampling Theory Basics: Summary

- Random variable: variable that can take on values with certain probability.
- Probability distribution: $Pr(Y = y_i)$.
- Expected value: $E[Y] = \sum_i y_i \Pr(Y = y_i)$.
- Variance: $Var(Y) = E[(Y E(Y))^2] = E[Y^2] E[Y]^2$.
- Standard deviation: $\sqrt{Var(Y)}$.
- ullet Binomial distribution: binary outcome, with probability p of 0 and (1-p) for 1; Probability of r 1's with n samples.
- Normal distribution
- Central limit theorem: sum of iid random variables tend to the normal distribution.
- Estimator is a random variable Y that estimates parameter p.
- Estimation bias: E(Y) p.
- N% confidence interval estimate of p: interval that includes true p with N% probability.

Binomial Distribution: e.g., Coin Toss



- Outcome itself is described by a random variable $Y \in \{Head, Tail\}$.
- P(Y = Head) = p and P(Y = Tail) = (1 p).
- Probability of observing r heads out of n coin tosses (this value corresponds to a radom variable R):

$$\Pr(R = r) = \frac{n!}{r!(n-r)!} p^r (1-p)^{(n-r)}.$$

• $\Pr(R=r)$ can be seen as the probability of observing r errors in a sample size of n (for binary target categories).

Estimation Bias

ullet Estimation bias of an estimator Y for a parameter p is:

$$E[Y] - p$$

Variance in Estimation

$$error_{S}(h) = \frac{r}{n}$$

$$Std[r] = \sqrt{np(1-p)}$$

$$Std[error_{S}(h)] = Std\left[\frac{r}{n}\right] = \frac{Std[r]}{n}$$

$$= \frac{\sqrt{np(1-p)}}{n} = \sqrt{\frac{p(1-p)}{n}}$$

$$\approx \sqrt{\frac{error_{S}(h)(1-error_{S}(h))}{n}}$$

Mean and Variance in Binomical Distributions

- $E[Y] \equiv \sum_{i=1}^{n} y_i \Pr(Y = y_i) = np$
- $Var[Y] \equiv E[(Y E[Y])^2] = np(1 p)$

Errors, in Terms of Bionomial Distribution

- $error_S(h) = \frac{r}{n}$
- $error_{\mathcal{D}} = p$

18

Normal Distribution

- Mean $E[X] = \mu$, and variance $Var[X] = \sigma^2$.
- Probability density:

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

• Probability of falling between interval [a, b]:

$$\int_a^b p(x)dx$$

 Central limit theorem: sum of a large number of iid random variables (the sum itself is a random variable) tends to Normal.

20

Confidence Interval in Normal Distributions

ullet N% of probability mass in Normal distributions are within:

$$\mu \pm z_N \sigma$$
.

- \bullet That means, a randomly drawn value y will be within the above interval with a N% chance.
- In other words, if you pick any value y, with N% chance, the mean will be within the interval:

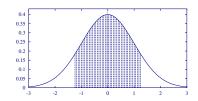
$$y \pm z_N \sigma$$
.

21

Calculating Confidence Intervals

- 1. Pick parameter p to estimate
 - $error_{\mathcal{D}}(h)$
- 2. Choose an estimator
 - $error_S(h)$
- 3. Determine probability distribution that governs estimator
 - Distribution of $error_S(h)$ can be approximated by Normal distribution when n is large
- 4. Find interval (L,U) such that N% of probability mass falls in the interval
 - ullet Use table of z_N values

Confidence Intervals for Different %



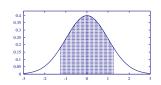
80% of area (probability) lies in $\mu \pm 1.28\sigma$

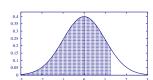
N% of area (probability) lies in $\mu \pm z_N \sigma$

N%:	50%	68%	80%	90%	95%	98%	99%
z_N :	0.67	1.00	1.28	1.64	1.96	2.33	2.58

22

Two-Sided vs. One-Sided Bounds





- Two-sided: Lower and upper bound with $100(1-\alpha/2)\%$ confidence
- \bullet One-sided: Lower bound only (or upper bound only) with $100(1-\alpha)\%.$
 - What is the probability that $error_D(h)$ is at most U?

Difference in Error of Two Hypotheses

Test h_1 on sample S_1 , test h_2 on S_2

1. Pick parameter to estimate

$$d \equiv error_{\mathcal{D}}(h_1) - error_{\mathcal{D}}(h_2)$$

2. Choose an estimator

$$\hat{d} \equiv error_{S_1}(h_1) - error_{S_2}(h_2)$$

3. Determine probability distribution that governs estimator

$$\sigma_{\hat{d}} \approx \sqrt{\frac{error_{S_1}(h_1)(1-error_{S_1}(h_1))}{n_1} + \frac{error_{S_2}(h_2)(1-error_{S_2}(h_2))}{n_2}}$$

4. Find interval (L, U) such that N% of probability mass falls in the interval

$$\hat{d} \pm z_N \sqrt{\frac{error_{S_1}(h_1)(1 - error_{S_1}(h_1))}{n_1} + \frac{error_{S_2}(h_2)(1 - error_{S_2}(h_2))}{n_2}}$$

25

Paired t-Test for Comparing h_A and h_B

- 1. Partition data into k disjoint test sets T_1 , T_2 , \dots , T_k of equal size, where this size is at least 30.
- 2. For i from 1 to k, do

$$\delta_i \leftarrow error_{T_i}(h_A) - error_{T_i}(h_B)$$

3. Return the value $\bar{\delta}$, where

$$\bar{\delta} \equiv \frac{1}{k} \sum_{i=1}^{k} \delta_i$$

N% confidence interval estimate for d:

$$\bar{\delta} \pm t_{N,(k-1)} s_{\bar{\delta}}$$

$$s_{\bar{\delta}} \equiv \sqrt{\frac{1}{k(k-1)} \sum_{i=1}^{k} (\delta_i - \bar{\delta})^2}$$

Note: $\delta_{\dot{a}}$ approximately Normally distributed, and t differ for different sample size, as well as %.

Hypothesis Testing

- What is the prob. that $error_{\mathcal{D}}(h_1) > error_{\mathcal{D}}(h_2)$?
- Even if $error_{S_1}(h_1) > error_{S_2}(h_2)$, there is a chance that $error_{\mathcal{D}}(h_1) < error_{\mathcal{D}}(h_2)$.
- E.g., what is the chance of d>0 when $\hat{d}=0.1$ ($error_{S_1}(h_1)=0.3$ and $error_{S_2}(h_2)=0.2$)?

$$-\hat{d} < d + 0.1 = E[\hat{d}] + 0.1 = \mu_{\hat{d}} + 0.1$$

-
$$\hat{d} < \mu_d + 1.64 \times \sigma_{\hat{d}} = \mu_d + 1.64 \times 0.061$$

- $z_{90\%}=1.64$ for two-sided interval, so the chance is 95%.
- Better to think **how to reject** the null hypothesis:
 - Null hypothesis H_0 : d=0
 - Alternative hypothesis H_1 : d>0 (must ensure P(d<0)=0)

26

Comparing learning algorithms L_A and L_B

What we'd like to estimate:

$$E_{S\subset\mathcal{D}}[error_{\mathcal{D}}(L_A(S)) - error_{\mathcal{D}}(L_B(S))]$$

where L(S) is the hypothesis output by learner L using training set S, i.e., the expected difference in true error between hypotheses output by learners L_A and L_B , when trained using randomly selected training sets S drawn according to distribution \mathcal{D} .

But, given limited data D_0 , what is a good estimator?

ullet could partition D_0 into training set S and training set T_0 , and measure

$$error_{T_0}(L_A(S_0)) - error_{T_0}(L_B(S_0))$$

even better, repeat this many times and average the results (next slide)

Comparing learning algorithms L_A and L_B

- 1. Partition data D_0 into k disjoint test sets T_1, T_2, \ldots, T_k of equal size, where this size is at least 30.
- 2. For i from 1 to k, do

use T_i for the test set, and the remaining data for training set S_i

- $S_i \leftarrow \{D_0 T_i\}$
- $h_A \leftarrow L_A(S_i)$
- $h_B \leftarrow L_B(S_i)$
- $\delta_i \leftarrow error_{T_i}(h_A) error_{T_i}(h_B)$
- 3. Return the value $\bar{\delta}$, where

$$\bar{\delta} \equiv \frac{1}{k} \sum_{i=1}^{k} \delta_i$$

29

Comparing learning algorithms L_A and L_B

Notice we'd like to use the paired t test on $\bar{\delta}$ to obtain a confidence interval, but not really correct, because the training sets in this algorithm are not independent (they overlap!).

More correct to view algorithm as producing an estimate of

$$E_{S \subset D_0}[error_{\mathcal{D}}(L_A(S)) - error_{\mathcal{D}}(L_B(S))]$$

instead of

$$E_{S\subset\mathcal{D}}[error_{\mathcal{D}}(L_A(S)) - error_{\mathcal{D}}(L_B(S))]$$

but even this approximation is better than no comparison.

30