Overview Stages in Imitation ()

Bayesian model of imitation in infants and robots: by Rao et al. (2004). Body babbling:
Stages in imitation: ® Repetitive motion.
o Body babbling. o Establishes mapping between movement and bodily

I f ions.
e Imitation of body movements. configurations

- . . e Builds an “internal model”.
e |mitation of actions on objects.

e |mitation based on inferring intentions of others.
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Stages in Imitation (ll) Stages in Imitation (ll)
Imitation of body movements Imitation of actions on objects
o Main issue: correspondence problem. e Interaction with object with a particular body part.
e Example: tongue protrusion. e Novel ways of interaction with an object are also mimicked.
e Properties: deferred imitation, correction of imitative response e |mitation shown after 1 day, or even 1 week.

without any feedback.



Stages in Imitation (1V)

Inferring intentions

Imitates unsuccessful acts.

Imitates with different body parts (means), to achieve the same
(inferred) goal (ends): e.g., use of legs instead of hand to hold

large object in place.

Ignorance of inanimate device.

Body Babbling: Learning Internal Models
Forward model:
Current state, action —— next state.

Inverse model:
Current state, desired state —— action.

Hybrid approach: Estimate inverse model using forward model

and constraints on actions (priors).

Bayesian Framework

Bayesian Imitative Learning

e Perceptual input: 11, I2, ..., I .

e States of observed objects: s1, 52, ..., SN
- st € {51,52, ..., Sp }, attime .
— sy is the goal state

— correspondence problem: how does s; relate to ones own

body state?



Action Selection from Memorized States
e Given a state sequence, e.g., S7 — S1 — ... — S12,
e current state sy — S, and
e goal state s = S,

e find action a+ to maximize the probability of s¢41 = Sj from the
memorized sequence (inverse model):

P(at = Ailst = Si,st41 = Sj,56 = Sk)

® Sensory consequence of action (forward model) is also
probabilistic:

P(st4+1 = Sj|st = Si,ar = Ay)

(Forward model is determined by the environment alone, thus s¢
is not needed.)

Estimating the Inverse Model
Certain probabilities that can be learned easily:
e Forward model (through body babbling):

P(N|C, A)

o Relationship between intermediate states and the goal (by
observing the teacher):

P(N|C, Q)
e Prior probabilities on actions (by observing the teacher):
P(A|C,G)
From these, the inverse model can be learned:

P(A|C, N, G)
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Let’s Simplify the Notation (YC)

A for action: ax = A;

C for current state: sy = S
N for next state: s;+1 = 5
(5 for goal state: sz = S}
Forward model:

P(N|C, A,G) = P(N|C, A)

Inverse model:

P(A|C, N, G)
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Estimating the Inverse Model (Il)

Recall the extended (conditionalized) Bayes rule:

P(Y|X,E)P(X|E)
P(Y|E)

P(X|Y,E) =

and that the forward model is independent of the goal G
P(N|C,A,G) = P(N|C,A)
From which we can calculate the inverse model as:
P(A|C,N,G) =cP(N|C,A)P(A|C, G)

where c = 1/P(N|C, G).
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Estimating the Inverse Model (lll)

e Finally, P(NN|C| ) can be calculated by marginalizing over A:

P(N|C, G)

Z P(N|C, G, Aw)P(Am|C, G)

m

_ ZP(MC, Am)P(Am|C, G)

again using the independence of the forward model from the goal.
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Putting Everything Together

Training:
1. Imitator learns the forward model through body babbling:
P(N|C, A)
2. Teacher shows a sequence of actions/states leading to one of the
goals: 81, 82, ..., 8¢
3. Imitator learns the prior from the teacher’s trajectory:

P(A|C,G)
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Inferring the Intent

o Where is the teacher eventually headed to?

e That can also be estimated, given the teacher’s action, and
current and next state.
P(G|A,C,N) = Kk P(N|C, A, G)P(G|C,A)
= ksP(N|C,A,G)P(A|C,G)P(G|C)
= ks P(N|C,A,G)P(A|C,G) P(C|G)P(G)

VO Vv
forward model prior

where k; are normalization constants.
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Putting Everything Together

Testing:
1. Teacher starts moving, and is still far from the goal.

2. Observing only A, C', and /N, the imitator can infer the teacher’s

G.

3. The imitator can also generate A based on maximum posterior
probability (or stochastically).
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Example Domain: Maze Forward Model
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n |\ [ Goal 3 . o . .
1’1 5 55 e Given C' and IV, we can say what direction [V is, relative to "
N. S, W, E, or X (this is what is shown in the column index in (c)
e Grid maze. above as S¢1-1).
e C, N, G are (x,y) locations in the grid. e Action A (shown as a¢) is the action taken at time .
o Several goal locations.

A e {N,S, W, E, X}, where X is to stay at that location.
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Imitation Run
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o8 1)) (c)
1 10 0 1 10 20 ! o Teacher’s run (left) and the imitator’s run (right) are shown.
e Given a particular goal G and the current location, we can learn e The goal in this case was (1, 9).

P(A|C, G).

o The prior can be learned by counting how many times a particular
action was taken when at C', while the end goal was G
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Learning the Intent Conclusion
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e The teacher starts from (1, 1), while moving along to goal 1.

o The imitator can infer the intended goal of the teacher before the
teacher reaches the goal (shown on the right).
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Discussion (YC) References

Rao, R. P. N., Shon, A. P, and Meltzoff, A. N. (2004). A bayesian model of imitation in infants and robots. Cambridge,
UK: Cambridge University Press. In press.

e Does the algorithm assume that the imitator know A of the
teacher?

e How does A differ from action inferred from just observing C' and
N7 Is the real A knowable at all?

o Correspondence problem is not resolved (as the authors state up
front).

® The problem of “Goal”.

e Are the conditional probabilities easy to estimate?:
P(N|C,A), P(A|C,G), etc.?

e How are mirror neurons relevant to these discussions, particularly
that of intention?
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