
Neural Networks

• Threshold units

• Gradient descent

• Multilayer networks

• Backpropagation

• Hidden layer representations

• Example: Face Recognition

• Advanced topics

• And, more.

1

Biological Neurons and Networks

• Neuron switching time∼ .001 second (1 ms)

• Number of neurons∼ 1010

• Connections per neuron∼ 104−5

• Scene recognition time∼ .1 second (100 ms)

• 100 processing steps doesn’t seem like enough

[→] much parallel computation

2

Artificial Neural Networks

input

hidden

output

wji

wkj

j

i

k

• Many neuron-like threshold switching units (real-valued)

• Many weighted interconnections among units

• Highly parallel, distributed process

• Emphasis on tuning weights automatically: New learning

algorithms, new optimization techniques, new learning principles.

3

Biologically Motivated (or Accurate) Neural Networks

• Spiking neurons

• Complex morphological models

• Detailed dynamical models

• Connectivity either based on or trained to mimic biology

• Focus on modeling network/neural/subneural processes

• Focus on natural principles of neural computation

• Different forms of learning: spike-timing-dependent plasticity,

covariance learning, short-term and long-term plasticity, etc.

4

When to Consider Neural Networks

• Input is high-dimensional discrete or real-valued (e.g. raw sensor

input)

• Output is discrete or real valued

• Output is a vector of values

• Possibly noisy data

• Long training time (may need occasional, extensive retraining)

• Form of target function is unknown

• Fast evaluation of learned target function

• Human readability of result is unimportant

5

Example Applications (more later)
Sharp
 Left

Sharp
Right

4 Hidden
 Units

30 Output
 Units

 30x32 Sensor
 Input Retina

Straight
 Ahead

(a) ALVINN (b) http://yann.lecun.com

Examples:

• Speech synthesis

• Handwritten character recognition (from yann.lecun.com).

• Financial prediction, Transaction fraud detection (Big issue lately)

• Driving a car on the highway

6

Perceptrons
w1

w2

wn

w0

x1

x2

xn

x0=1

.

.

.
Σ

Σ wi xi
n

i=0 1 if > 0

-1 otherwise{o = Σ wi xi
n

i=0

o(x1, . . . , xn) =

8<: 1 if w0 + w1x1 + · · ·+ wnxn > 0

−1 otherwise.

Sometimes we’ll use simpler vector notation:

o(~x) =

8<: 1 if ~w · ~x > 0

−1 otherwise.

7

Hypothesis Space of Perceptrons

w1

w2

wn

w0

x1

x2

xn

x0=1

.

.

.
Σ

Σ wi xi
n

i=0 1 if > 0

-1 otherwise{o = Σ wi xi
n

i=0

• The tunable parameters are the weights w0, w1, ..., wn, so the

space H of candidate hypotheses is the set of all possible

combination of real-valued weight vectors:

H = {~w|~w ∈ R(n+1)}

8

Boolean Logic Gates with Perceptron Units
−1 t=1.5

W1=1

W2=1

−1

W1=1

W2=1

−1t=0.5

W1=−1

t=−0.5

AND OR NOT

Russel & Norvig

• Perceptrons can represent basic boolean functions.

• Thus, a network of perceptron units can compute any Boolean

function.

What about XOR or EQUIV?

9

What Perceptrons Can Represent

t−1

I0

I1

w0

w1

I0

I1

W1
t

Slope = −W0
W1

Output = 1

Output=0fs

Perceptrons can only represent linearly separable functions.

• Output of the perceptron:

W0 × I0 + W1 × I1 − t > 0, then output is 1

W0 × I0 + W1 × I1 − t ≤ 0, then output is − 1

The hypothesis space is a collection of separating lines.

10

Geometric Interpretation

t−1

I0

I1

w0

w1

I0

I1

W1
t

Slope = −W0
W1

Output = 1

Output=0fs

• Rearranging

W0 × I0 + W1 × I1 − t > 0, then output is 1,

we get (if W1 > 0)

I1 >
−W0

W1
× I0 +

t

W1
,

where points above the line, the output is 1, and -1 for those below the line.

Compare with

y =
−W0

W1
× x +

t

W1
.

11

The Role of the Bias

−1

I0

I1

w0

w1

t = 0

W1
t

Slope = −W0
W1

I0= 0

I1

• Without the bias (t = 0), learning is limited to adjustment of the

slope of the separating line passing through the origin.

• Three example lines with different weights are shown.

12

Limitation of Perceptrons

t−1

I0

I1

w0

w1

I0

I1

W1
t

Slope = −W0
W1

Output = 1

Output=0fs

• Only functions where the -1 points and 1 points are clearly

separable can be represented by perceptrons.

• The geometric interpretation is generalizable to functions of n

arguments, i.e. perceptron with n inputs plus one threshold (or

bias) unit.

13

Generalizing to n-Dimensions
z

Tn = [a b c]

x

y

(x0,y0,z0)

(x,y,z) 1

x

y

z

a
b

c

d

http://mathworld.wolfram.com/Plane.html

• ~n = (a, b, c), ~x = (x, y, z), ~x0 = (x0, y0, z0).

• Equation of a plane: ~n · (~x− ~x0) = 0

• In short, ax + by + cz + d = 0, where a, b, c can serve as

the weight, and d = −~n · ~x0 as the bias.

• For n-D input space, the decision boundary becomes a

(n− 1)-D hyperplane (1-D less than the input space).
14

Linear Separability

I0

I1

I0

I1

Linearly−separable Not Linearly−separable

• For functions that take integer or real values as arguments and

output either -1 or 1.

• Left: linearly separable (i.e., can draw a straight line between the

classes).

• Right: not linearly separable (i.e., perceptrons cannot represent

such a function)

15

Linear Separability (cont’d)

I1

I0

I1

I0

I1

I0
AND OR XOR

−1

−1 −1 −1

−1

−1

1 1 1

11

1

?

• Perceptrons cannot represent XOR!

• Minsky and Papert (1969)

16

XOR in Detail
I0 I1 XOR

1 0 0 -1

2 0 1 1

3 1 0 1

4 1 1 -1

t−1

I0

I1

w0

w1

I0

I1

W1
t

Slope = −W0
W1

Output = 1

Output=0fs

W0 × I0 + W1 × I1 − t > 0, then output is 1:

1 −t ≤ 0 → t ≥ 0

2 W1 − t > 0 → W1 > t

3 W0 − t > 0 → W0 > t

4 W0 + W1 − t ≤ 0 → W0 + W1 ≤ t

2t < W0 + W1 < t (from 2, 3, and 4), but t ≥ 0 (from 1), a

contradiction.

17

Learning: Perceptron Rule
w1

w2

wn

w0

x1

x2

xn

x0=1

.

.

.
Σ

Σ wi xi
n

i=0 1 if > 0

-1 otherwise{o = Σ wi xi
n

i=0

• The weights do not have to be calculated manually.

• We can train the network with (input,output) pair according to the

following weight update rule:

wi ← wi + η(t− o)xi

where η is the learning rate parameter.

• Proven to converge if input set is linearly separable and η is

small.

18

Learning in Perceptrons (Cont’d)

wi ← wi + η(t− o)xi

• When t = o, weight stays.

• When t = 1 and o = −1, change in weight is:

η(1− (−1))xi > 0

if xi are all positive. Thus ~w · ~x will increase, thus eventually,

output o will turn to 1.

• When t = −1 and o = 1, change in weight is:

η(−1− 1)xi < 0

if xi are all positive. Thus ~w · ~x will decrease, thus eventually,

output o will turn to -1.

19

Learning in Perceptron: Another Look

−1

a

b

t +
+

+
+

−−
−

−
−

x

y

x

y

w=(a,b)

q p

• The perceptron on the left can be represented as a line shown on

the right (why? see page 14).

• Learning can be thought of as adjustment of ~w turning toward the

input vector ~x: ~w ← ~w + η(t− o)~x.

• Adjustment of the bias t moves the line closer or away from the

origin.

20

Another Learning Rule: Delta Rule

• The perceptron rule cannot deal with noisy data.

• The delta rule will find an approximate solution even when input

set is not linearly separable.

• Use linear unit without the step function: o(~x) = ~w · ~x.

• Want to reduce the error by adjusting ~w:

E(~w) ≡
1

2

X
d∈D

(td − od)2

21

Gradient Descent

-1

0

1

2

-2
-1

0
1

2
3

0

5

10

15

20

25

w0 w1

E[
w]

• Want to minimize by adjusting

~w: E(~w) ≡ 1
2

P
d∈D(td − od)2

• Note: the error surface is defined by the training data D. A

different data set will give a different surface.

• E(w0, w1) is the error function above, and we want to change

(w0, w1) to position under a low E.

22

Gradient Descent (Cont’d)

Gradient

∇E[~w] ≡
»

∂E

∂w0
,

∂E

∂w1
, · · ·

∂E

∂wn

–
Training rule:

∆~w = −η∇E[~w]

i.e.,

∆wi = −η
∂E

∂wi

23

Gradient Descent (Example)

line 1
 0.02
 0

 -0.02

 0 5 10 15 20 25 30 35 40 45 50 0
 5

 10
 15

 20
 25

 30
 35

 40
 45

 50-0.04
-0.03
-0.02
-0.01

 0
 0.01
 0.02
 0.03
 0.04

• Gradient points in the maximum increasing direction.

• Gradient is prependicular to the level curve (uphill direction).

• E(w0, w1) is the error function above, so

∇E = (∂E
∂w0

, ∂E
∂w1

), a vector on a 2D plane.

24

Gradient Descent (Cont’d)

∂E

∂wi

=
∂

∂wi

1

2

X
d

(td − od)
2

=
1

2

X
d

∂

∂wi

(td − od)
2

=
1

2

X
d

2(td − od)
∂

∂wi

(td − od)

=
X

d

(td − od)
∂

∂wi

(td − ~w · ~xd)

∂E

∂wi

=
X

d

(td − od)(−xi,d)

Since we want ∆wi = −η ∂E
∂wi

, ∆wi = η
P

d(td − od)xi,d .

25

Gradient Descent: Summary

Gradient-Descent (training examples, η)

Each training example is a pair of the form 〈~x, t〉, where ~x is the

vector of input values, and t is the target output value. η is the

learning rate (e.g., .05).

• Initialize each wi to some small random value

• Until the termination condition is met, Do

– Initialize each ∆wi to zero.

– For each 〈~x, t〉 in training examples, Do

∗ Input the instance ~x to the unit and compute the output o

∗ For each linear unit weight wi , Do

∆wi ← ∆wi + η(t− o)xi

– For each linear unit weight wi , Do

wi ← wi + ∆wi

26

Gradient Descent Properties

Gradient descent is effective in searching through a large of infinite H :

• H contains continuously parameterized hypotheses, and

• the error can be differentiated wrt the parameters.

Limitations:

• convergence can be slow, and

• finds local minima (global minumum not guaranteed).

27

Stochastic Approximation to Grad. Desc.

Avoiding local minima: Incremental gradient descent, or stochastic

gradient descent.

• Instead of weight update based on all input in D, immediately

update weights after each input example:

∆wi = η(t− o)xi,

instead of

∆wi = η
X
d∈D

(td − od)xi,

• Can be seen as minimizing error function

Ed(~w) =
1

2
(td − od)2.

28

Standard and Stochastic Grad. Desc.: Differences

• In the standard version, error is defined over entire D.

• In the standard version, more computation is needed per weight

update, but η can be larger.

• Stochastic version can sometimes avoid local minima.

29

Summary

Perceptron training rule guaranteed to succeed if

• Training examples are linearly separable

• Sufficiently small learning rate η

Linear unit training rule using gradient descent

• Asymptotic convergence to hypothesis with minimum squared

error

• Given sufficiently small learning rate η

• Even when training data contains noise

• Even when training data not separable by H

30

Exercise: Implementing the Perceptron

• It is fairly easy to implement a perceptron.

• You can implement it in any programming language: C/C++, etc.

• Look for examples on the web, and JAVA applet demos.

31

Multilayer Networks
w1
w2

wn

w0

x1

x2

xn

x0 = 1

.

.

.
Σ

net = Σ wi xii=0

n
1

1 + e-neto = σ(net) =

• Differentiable threshold unit: sigmoid

σ(y) =
1

1 + exp(−y)
.

Interesting property: dσ(y)
dy = σ(y)(1− σ(y)).

• Output:

o = σ(~w · ~x)

• Other functions:

tanh(y) =
exp(−2y)− 1

exp(−2y) + 1

32

Multilayer Networks and Backpropagation

F1 F2

head hid who’d hood
... ...

• Nonlinear decision surfaces.

 0 0.2 0.4 0.6 0.8 1 0
 0.2

 0.4
 0.6

 0.8
 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Output

sigm(x+y-1.1)
 0.8
 0.6
 0.4
 0.2

Input 1
Input 2

Output

 0 0.2 0.4 0.6 0.8 1 0
 0.2

 0.4
 0.6

 0.8
 1

 0.5 0.505 0.51 0.515 0.52 0.525 0.53 0.535 0.54 0.545 0.55

Output

sigm(sigm(x+y-1.1)+sigm(-x-y+1.13)-1)
 0.54
 0.53
 0.52
 0.51

Input 1
Input 2

Output

(a) One output (b) Two hidden, one output

• Another example: XOR

33

Error Gradient for a Sigmoid Unit

∂E

∂wi

=
∂

∂wi

1

2

X
d∈D

(td − od)
2

=
1

2

X
d

∂

∂wi

(td − od)
2

=
1

2

X
d

2(td − od)
∂

∂wi

(td − od)

=
X

d

(td − od)

„
−

∂od

∂wi

«

= −
X

d

(td − od)
∂od

∂netd

∂netd

∂wi

34

Error Gradient for a Sigmoid Unit

From the previous page:

∂E

∂wi

= −
X

d

(td − od)
∂od

∂netd

∂netd

∂wi

But we know:

∂od

∂netd

=
∂σ(netd)

∂netd

= od(1− od)

∂netd

∂wi

=
∂(~w · ~xd)

∂wi

= xi,d

So:

∂E

∂wi

= −
X
d∈D

(td − od)od(1− od)xi,d

35

Backpropagation Algorithm

Initialize all weights to small random numbers.

Until satisfied, Do

• For each training example, Do

1. Input the training example to the network and compute the network

outputs

2. For each output unit k

δk ← ok(1− ok)(tk − ok)

3. For each hidden unit h

δh ← oh(1− oh)
P

k∈outputs wkhδk

4. Update each network weight wi,j

wji ← wji + ∆wji where

∆wji = ηδjxi .

Note: wji is the weight from i to j (i.e., wj←i).

36

The δ Term

• For output unit:

δk ← ok(1− ok)| {z }
σ′(netk)

(tk − ok)| {z }
Error

• For hidden unit:

δh ← oh(1− oh)| {z }
σ′(neth)

X
k∈outputs

wkhδk| {z }
Backpropagated error

• In sum, δ is the derivative times the error.

• Derivation to be presented later.

37

Derivation of ∆w

• Want to update weight as:

∆wji = −η
∂Ed

∂wji
,

where error is defined as:

Ed(~w) ≡
1

2

X
k∈outputs

(tk − ok)2

• Given netj =
P

j wjixi,

∂Ed

∂wji
=

∂Ed

∂netj

∂netj

∂wji

• Different formula for output and hidden.

38

Derivation of ∆w: Output Unit Weights

From the previous page, ∂Ed
∂wji

= ∂Ed
∂netj

∂netj

∂wji

• First, calculate ∂Ed
∂netj

:

∂Ed

∂netj
=

∂Ed

∂oj

∂oj

∂netj

∂Ed

∂oj
=

∂

∂oj

1

2

X
k∈outputs

(tk − ok)2

=
∂

∂oj

1

2
(tj − oj)

2

= 2
1

2
(tj − oj)

∂(tj − oj)

∂oj

= −(tj − oj)
39

Derivation of ∆w: Output Unit Weights

From the previous page,
∂Ed

∂netj
= ∂Ed

∂oj

∂oj

∂netj
= −(tj − oj)

∂oj

∂netj
:

• Next, calculate
∂oj

∂netj
: Since oj = σ(netj), and

σ′(netj) = oj(1− oj),

∂oj

∂netj
= oj(1− oj).

Putting everything together,

∂Ed

∂netj
=

∂Ed

∂oj

∂oj

∂netj
= −(tj − oj)oj(1− oj).

40

Derivation of ∆w: Output Unit Weights

From the previous page:

∂Ed

∂netj
=

∂Ed

∂oj

∂oj

∂netj
= −(tj − oj)oj(1− oj).

Since
∂netj

∂wji
=

∂
P

k wjkxk

∂wji
= xi,

∂Ed

∂wji
=

∂Ed

∂netj

∂netj

∂wji

= − (tj − oj)oj(1− oj)| {z }
δj=error×σ′(net)

xi|{z}
input

41

Derivation of ∆w: Hidden Unit Weights

Start with ∂Ed
∂wji

= ∂Ed
∂netj

∂netj

∂wji
= ∂Ed

∂netj
xi:

∂Ed

∂netj

=
X

k∈Downstream(j)

∂Ed

∂netk

∂netk

∂netj

=
X

k∈Downstream(j)

−δk
∂netk

∂netj

=
X

k∈Downstream(j)

−δk
∂netk

∂oj

∂oj

∂netj

=
X

k∈Downstream(j)

−δkwkj
∂oj

∂netj

=
X

k∈Downstream(j)

−δkwkj oj(1− oj)| {z }
σ′(net)

(1)

42

Derivation of ∆w: Hidden Unit Weights

Finally, given

∂Ed

∂wji

=
∂Ed

∂netj

∂netj

∂wji

=
∂Ed

∂netj

xi,

and
∂Ed

∂netj

=
X

k∈Downstream(j)

−δkwkj oj(1− oj)| {z }
σ′(net)

,

∆wji = −η
∂Ed

∂wji

= η [oj(1− oj)| {z }
σ′(net)

X
k∈Downstream(j)

δkwkj

| {z }
error

]

| {z }
δj

xi

43

Extension to Different Network Topologies

input

hidden

output

wji

wkj

j

i

k

• Arbitrary number of layers: for neurons in layer m:

δr = or(1− or)
X

s∈layer m+1

wsrδs.

• Arbitrary acyclic graph:

δr = or(1− or)
X

s∈Downstream(r)

wsrδs.

44

Backpropagation: Properties

• Gradient descent over entire network weight vector.

• Easily generalized to arbitrary directed graphs.

• Will find a local, not necessarily global error minimum:

– In practice, often works well (can run multiple times with

different initial weights).

• Often include weight momentum α

∆wi,j(n) = ηδjxi,j + α∆wi,j(n− 1).

• Minimizes error over training examples:

– Will it generalize well to subsequent examples?

• Training can take thousands of iterations→ slow!

• Using the network after training is very fast.
45

Representational Power of Feedforward Networks

• Boolean functions: every boolean function representable with two

layers (hidden unit size can grow exponentially in the worst case:

one hidden unit per input example, and “OR” them).

• Continous functions: Every bounded continuous function can be

approximated with an arbitrarily small error (output units are

linear).

• Arbitrary functions: with three layers (output units are linear).

46

H-Space Search and Inductive Bias

• H-space = n-D weight space (when there are n weights).

• The space is continuous, unlike decision tree or

general-to-specific concept learning algorithms.

• Inductive bias:

– Smooth interpolation between data points.

47

Learning Hidden Layer Representations
Inputs Outputs

Input Output

10000000 → 10000000

01000000 → 01000000

00100000 → 00100000

00010000 → 00010000

00001000 → 00001000

00000100 → 00000100

00000010 → 00000010

00000001 → 00000001

48

Learned Hidden Layer Representations
Inputs Outputs

Input Hidden Output

Values

10000000 → .89 .04 .08 → 10000000

01000000 → .01 .11 .88 → 01000000

00100000 → .01 .97 .27 → 00100000

00010000 → .99 .97 .71 → 00010000

00001000 → .03 .05 .02 → 00001000

00000100 → .22 .99 .99 → 00000100

00000010 → .80 .01 .98 → 00000010

00000001 → .60 .94 .01 → 00000001

49

Learned Hidden Layer Representations

• Learned encoding is similar to standard 3-bit binary code.

• Automatic discovery of useful hidden layer representations is a

key feature of ANN.

• Note: The hidden layer representation is compressed.
50

Overfitting

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

0 5000 10000 15000 20000

Er
ro

r

Number of weight updates

Error versus weight updates (example 1)

Training set error
Validation set error

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 1000 2000 3000 4000 5000 6000

Er
ro

r

Number of weight updates

Error versus weight updates (example 2)

Training set error
Validation set error

• Error in two different robot perception tasks.

• Training set and validation set error.

• Early stopping ensures good performance on unobserved

samples, but must be careful.

• Weight decay, use of validation sets, use of k-fold

cross-validation, etc. to overcome the problem.

51

Alternative Error Functions

Penalize large weights:

E(~w) ≡
1

2

X
d∈D

X
k∈outputs

(tkd − okd)
2

+ γ
X
i,j

w
2
ji

Train on target slopes as well as values (when the slope is available):

E(~w) ≡
1

2

X
d∈D

X
k∈outputs

24(tkd − okd)2 + µ
X

j∈inputs

0@ ∂tkd

∂x
j
d

−
∂okd

∂x
j
d

1A235

Tie together weights:

• e.g., in phoneme recognition network, or

• handwritten character recognition (weight sharing).

52

Recurrent Networks

output

hidden

input context

delay

• Sequence recognition.

• Store tree structure (next

slide).

• Can be trained with plain

backpropagation.

• Generalization may not be

perfect.

53

Recurrent Networks (Cont’d)

A B

BA

(A, B)

C (A, B)

(C, A, B)

C (A, B)

input

delay

stack

input stack

delay
input, stack

• Autoassociation (intput = output)

• Represent a stack using the hidden layer representation.

• Accuracy depends on numerical precision.

54

Some Applications: NETtalk

• NETtalk: Sejnowski and Rosenberg (1987).

• Learn to pronounce English text.

• Demo

• Data available in UCI ML repository

55

NETtalk data

aardvark a-rdvark 1<<<>2<<0

aback xb@k-0>1<<0

abacus @bxkxs 1<0>0<0

abaft xb@ft 0>1<<0

abalone @bxloni 2<0>1>0 0

abandon xb@ndxn 0>1<>0<0

abase xbes-0>1<<0

abash xb@S-0>1<<0

abate xbet-0>1<<0

abatis @bxti-1<0>2<2

...

• Word – Pronunciation – Stress/Syllable

• about 20,000 words

56

Backpropagation Exercise

• URL: http://www.cs.tamu.edu/faculty/choe/src/backprop-1.6.tar.gz

• Untar and read the README file:

gzip -dc backprop-1.6.tar.gz | tar

xvf -

• Run make to build (on departmental unix machines).

• Run ./bp conf/xor.conf etc.

57

Backpropagation: Example Results

0

0.05

0.1

0.15

0.2

0.25

0 5 10 15 20 25 30 35 40

Er
ro

r

10,000 Epochs

Backprop

OR
AND
XOR

• Epoch: one full cycle of training through all training input patterns.

• OR was easiest, AND the next, and XOR was the most difficult to

learn.

• Network had 2 input, 2 hidden and 1 output unit. Learning rate

was 0.001.

58

Backpropagation: Example Results (cont’d)

0

0.05

0.1

0.15

0.2

0.25

0 5 10 15 20 25 30 35 40

Er
ro

r

10,000 Epochs

Backprop

OR
AND
XOR

OR

AND

XOR
Output to (0,0), (0,1), (1,0), and (1,1) form each row.

59

Backpropagation: Things to Try

• How does increasing the number of hidden layer units affect the

(1) time and the (2) number of epochs of training?

• How does increasing or decreasing the learning rate affect the

rate of convergence?

• How does changing the slope of the sigmoid affect the rate of

convergence?

• Different problem domains: handwriting recognition, etc.

60

Summary

• ANN learning provides general method for learning real-valued

functions over continuous or discrete-valued attributed.

• ANNs are robust to noise.

• H is the space of all functions parameterized by the weights.

• H space search is through gradient descent: convergence to

local minima.

• Backpropagation gives novel hidden layer representations.

• Overfitting is an issue.

• More advanced algorithms exist.

61

