
Concept Learning

• Positive and negative examples

• General-to-specific ordering (partial order)

• Inductive learning

• Hypothesis space

• Version space

• Inductive bias

1

Concept

• Classification of things into discrete categories, or discrete (many

times binary) decisions.

• Description of a small subset within a larger set.

• Boolean-valued function from the set to {True, False}: e.g.,

an element in the set is mapped to true if bird, and false if not.

• Problem: automatically infer the general definition of some

concept, given labeled examples

2

Concept Learning

Ex Num Sky Temp Humid Wind Water Forecst EnjoySpt

1 Sunny Warm Normal Strong Warm Same Yes

2 Sunny Warm High Strong Warm Same Yes

3 Rainy Cold High Strong Warm Change No

4 Sunny Warm High Strong Cool Change Yes

• Inferring a boolean-valued function from training examples

consisting of input and output.

• Example: “Days on which my friend enjoys his favorite water

sport.”

• Task: given a set of examples with attributes and decisions,

want to predict the decision for an arbitrary date.

3

EnjoySport domain
Ex Num Sky Temp Humid Wind Water Forecst EnjoySpt

1 Sunny Warm Normal Strong Warm Same Yes

2 Sunny Warm High Strong Warm Same Yes

3 Rainy Cold High Strong Warm Change No

4 Sunny Warm High Strong Cool Change Yes

• Sky ∈ {Sunny, Cloudy, Rainy}

• AirTemp ∈ {Warm, Cold}

• Humidity ∈ {Normal, High}

• Wind ∈ {Strong, Weak}

• Water ∈ {Warm, Cool}

• Forecast ∈ {Same, Change}

• EnjoySport ∈ {Y es, No}

4

Hypothesis: Conjunction of Constraints
Ex Num Sky Temp Humid Wind Water Forecst EnjoySpt

1 Sunny Warm Normal Strong Warm Same Yes

2 Sunny Warm High Strong Warm Same Yes

3 Rainy Cold High Strong Warm Change No

4 Sunny Warm High Strong Cool Change Yes

• Need to decide the form of hypothesis: conjunction of constraints

may be one.

• A six-element vector, where each element can be:

– Attribute value,

– “?” (any value is allowed), or

– “∅” (no value is acceptable).

• Sample x = 〈Sunny, Cold, High, Warm, Same〉 would

satisfy the hypothesis h = 〈?, Cold, High, ?, ?, ?〉: that is,

h(x) = 1.
5

Conjunctive Hypothesis

• Given hypothesis h = 〈h1, h2, h3, h4, h5, h6〉,
and an example x = 〈x1, x2, x3, x4, x5, x6〉:

h(x) = [(h1 = x1) ∨ (h1 =?)]∧[(h2 = x2) ∨ (h2 =?)]∧...

• Note that if any hi is ∅, then h(x) = 0 for all x.

• Example x satisfies hypothesis h if h(x) = 1, regardless of the

decision.

6

Examples

Ex Num Sky Temp Humid Wind Water Forecst EnjoySpt

1 Sunny Warm Normal Strong Warm Same Yes

2 Sunny Warm High Strong Warm Same Yes

3 Rainy Cold High Strong Warm Change No

4 Sunny Warm High Strong Cool Change Yes

All examples above would:

• satisfy the hypothesis 〈Sunny, Warm, ?, ?, ?, ?〉, except for

example 3.

• satisfy the hypothesis 〈?, ?, ?, ?, ?, ?〉, regardless of the

negative example (EnjoySport = No).

• not satisfy the hypothesis 〈∅, ∅, ∅, ∅, ∅, ∅〉, or any hypothesis

containing ∅.

7

Terminology

{0,1}
c(x)

x

X from training set D

y ?

not from training set D

• set of instances X : the set from which examples are drawn from. Note

that training my happen on a subset of this set.

• target concept: concept or function to be learned, given X , a set of

instances: c : X → {0, 1} c(X) = 1 if EnjoySport =“Yes”,

and

c(X) = 0 if EnjoySport =“No”.

• set of training examples D: examples x drawn from X , together with the

concept value c(x) ∈ {0, 1}: 〈x, c(x)〉
– Positive example: c(x) = 1, Negative example: c(x) = 0

8

Terminology (Cont’d)

{0,1}
c(x)

x

X from training set D

y ?

not from training set D

• Goal: find h(x) = c(x) for all x ∈ X (i.e., includes y in the figure

above).

• What if domain(D) = X?

– Regardless of c(x), learning is trivial: just keep a look-up table for all

possible x.

– 〈?, ?, ?, ..., ?〉 may not work, because there may be negative

examples

– Note: D = {〈x, c(x)〉|x is a training sample}

9

Inductive Learning Hypothesis

• Hypothesis h derived from the training set can only fit the given

data.

• That is, output hypothesis fits the target concept over the training

set, at best.

• Assumption: hypothesis that fits the observed data may also fit

unseen data.

• The inductive learning hypothesis: “Any hypothesis found to

approximate the target function well over a sufficiently large set of

training examples will also approximate the target function well

over other unobserved examples.”

10

Concept Learning as Search

• Given a set of hypotheses hi(x), can we find one that holds

hi(x) = c(x)? This is basically a search problem.

• Choice of representation for hypotheses determine the

hypothesis space:

– In EnjoySport, 3× 2× 2× 2× 2× 2 = 96 possible

combination of attributes (each attribute can take on 3, 2, 2, ...

distinct values).

– The choice of a conjunction of constraints hypothesis

gives 5× 4× 4× 4× 4× 4 = 5120 syntactically

distinct hypotheses (attribute values plus “?” and “∅”).

• Only 1 + 4× 3× 3× 3× 3× 3 = 973 semantically

distinct hypotheses (ignore all that contain ∅, except for

〈∅, ∅, ∅, ∅, ∅, ∅〉.
11

General-to-Specific Ordering

• A useful structure exists in concept learning problem: a

general-to-specific ordering, which allows you to conduct efficient

search even in an infinite hypothesis space.

• Example: h2 is more general than h1

– h1 = 〈Sunny, ?, ?, Strong, ?, ?〉
– h2 = 〈Sunny, ?, ?, ?, ?, ?〉

Definition:

• Let hj and hk be boolean functions defined over X . Then, hj is

more general than or equal to hk (written hj ≥g hk) iff

(∀x ∈ X) [(hk(x) = 1)→ (hj(x) = 1)]

• hj >g hk : strictly more general than

• more specific, etc.
12

General-to-Specific Ordering

h = <Sunny, ?, ?, Strong, ?, ?>
h = <Sunny, ?, ?, ?, ?, ?>
h = <Sunny, ?, ?, ?, Cool, ?>

2h

h 3h

Instances X Hypotheses H

Specific

General

1x

2x

x = <Sunny, Warm, High, Strong, Cool, Same>
x = <Sunny, Warm, High, Light, Warm, Same>

1

1

2

1

2
3

• Within the boundary: positive; Outside the boundary: negative.

• More general: more examples classified as positive.

• ≥g (→) forms a partial order over the hypotheses (reflexive,

antisymmetric, and transitive).

• Some pairs may have no≥g relation at all.

13

Find-S: Find Maximally Specific Hypothesis

• Initialize h to the most specific hypothesis in H .

• For each positive training instance x

– For each attribute constraint ai in h,

If the constraint is satisfied by xi

Then do nothing

Else replace ai in h by the next more general constraint that

is satisfied by x.

• Output hypothesis h.

14

Find-S: Example
Ex Num Sky Temp Humid Wind Water Forecst EnjoySpt

1 Sunny Warm Normal Strong Warm Same Yes

2 Sunny Warm High Strong Warm Same Yes

3 Rainy Cold High Strong Warm Change No

4 Sunny Warm High Strong Cool Change Yes

Specific ∅ → {Sunny, Warm, etc.} → to General.

Example:

• Begin with h = 〈∅, ∅, ∅, ∅, ∅, ∅〉.

• Take example 1 from the table above: let’s call this x.

• h(x) = 0, so replace each ai in h with more general ones so

that h is satisfied by x (i.e. h(x) = 1).

h← 〈Sunny, Warm, Normal, Strong, Warm, Same〉

15

Find-S: Example
Ex Num Sky Temp Humid Wind Water Forecst EnjoySpt

1 Sunny Warm Normal Strong Warm Same Yes

2 Sunny Warm High Strong Warm Same Yes

3 Rainy Cold High Strong Warm Change No

4 Sunny Warm High Strong Cool Change Yes

Start with

〈Sunny, Warm, Normal, Strong, Warm, Same〉:

• Take example 2 from the table above (call it x).

• h(x) = 0, so generalize conflicting constraints.

h← 〈Sunny, Warm, ?, Strong, Warm, Same〉

• Take example 3: nothing happens, because it’s a negative

example (current h is already consistent: h(x3) = c(x3))

• Take example 4: h← 〈Sunny, Warm, ?, Strong, ?, ?〉
16

Find-S: Example
Instances X Hypotheses H

Specific

General

1x
2x

x 3

x4

h0
h1

h2,3

h4

+ +

+

x = <Sunny Warm High Strong Cool Change>, +4

x = <Sunny Warm Normal Strong Warm Same>, +1
x = <Sunny Warm High Strong Warm Same>, +2
x = <Rainy Cold High Strong Warm Change>, -3

h = <Sunny Warm Normal Strong Warm Same>1
h = <Sunny Warm ? Strong Warm Same>2

h = <Sunny Warm ? Strong ? ? >4

h = <Sunny Warm ? Strong Warm Same>3

0h = <∅, ∅, ∅, ∅, ∅, ∅>

-

• Use of the more general than partial ordering to organize the

search: move from hypothesis to hypothesis, from specific to

general.

• Each positive example can potentially change the current

hypothesis, from specific (top) to general (bottom).

17

Find-S: Properties and Limitations

Generalize only as far as necessary to account for the examples (the

most specific hypothesis that is consistent with the examples).

Limitations: In general,

• There can be other consistent hypotheses.

• Why only the most specific hypothesis?

• Can’t tell whether the training data is inconsistent.

• Depending on H , there might be several maximally specific

hypotheses.

18

Version Space and Candidate-Elimination Algorithm

• The set of all hypotheses consistent with the examples is called

the version space. (Note: h does not need to be maximally

specific.)

• Thus, the version space is a subset of the hypothesis space H .

• How can we represent the version space?: One way is to

enumerate all hypotheses consistent with the examples.

• Candidate-Elimination algorithm can output a description of the

version space, without enumerating all the hypotheses.

19

Definition of Terms

• Consistent: A hypothesis is consistent with a set of training

examples D iff h(x) = c(x) for all 〈x, c(x)〉 ∈ D

Consistent(h, D) ≡ (∀〈x, c(x)〉 ∈ D)h(x) = c(x)

Cf. x satisfies h if h(x) = 1, whether or not c(x) = 1.

• Version space: The version space V SH,D , with respect to

hypothesis space H and training examples D, is:

V SH,D ≡ {h ∈ H|Consistent(h, D)}

20

List-Then-Eliminate Algorithm

• Algorithm

– V S ←H

– For each 〈x, c(x)〉 ∈ D

remove from V S any hypothesis h for which h(x) 6= c(x)

– Output the list of hypotheses in V S.

• Evaluation

– Problem: Can’t cope with infinite hypothesis space. Need to

enumerate all.

– Merit: guaranteed to output all consistent hypotheses, if H is

finite.

21

Compact Representation of V S

• Just keep two small hypothesis sets G and S to mark the

boundary of the version space.

• G: set of most general hypotheses consistent with D

– Any more general then become inconsistent.

• S: set of most specific hypotheses consistent with D.

– Any more specific then become inconsistent.

S:

<Sunny, Warm, ?, ?, ?, ?><Sunny, ?, ?, Strong, ?, ?> <?, Warm, ?, Strong, ?, ?>

<Sunny, Warm, ?, Strong, ?, ?>{ }

G: <Sunny, ?, ?, ?, ?, ?>, <?, Warm, ?, ?, ?, ?> { }

22

G and S

Ex Num Sky Temp Humid Wind Water Forecst EnjoySpt

1 Sunny Warm Normal Strong Warm Same Yes

2 Sunny Warm High Strong Warm Same Yes

3 Rainy Cold High Strong Warm Change No

4 Sunny Warm High Strong Cool Change Yes

S:

<Sunny, Warm, ?, ?, ?, ?><Sunny, ?, ?, Strong, ?, ?> <?, Warm, ?, Strong, ?, ?>

<Sunny, Warm, ?, Strong, ?, ?>{ }

G: <Sunny, ?, ?, ?, ?, ?>, <?, Warm, ?, ?, ?, ?> { }

Note: There can be more than one h in G.

23

Property of G and S

S:

<Sunny, Warm, ?, ?, ?, ?><Sunny, ?, ?, Strong, ?, ?> <?, Warm, ?, Strong, ?, ?>

<Sunny, Warm, ?, Strong, ?, ?>{ }

G: <Sunny, ?, ?, ?, ?, ?>, <?, Warm, ?, ?, ?, ?> { }

• Given the two sets G and S, we can easily find all members of

the version space by generating the hypotheses that lie between

G and S in the general-to-specific partial ordering.

24

Formal Definition of G and S

• General Boundary G, with respect to H and D:

G ≡ {g ∈ H|Consistent(g, D)

∧(¬∃g′ ∈ H)[(g′ >g g) ∧ Consistent(g′, D)]}

• Specific Boundary S:

S ≡ {s ∈ H|Consistent(s, D)

∧(¬∃s′ ∈ H)[(s >g s′) ∧ Consistent(s′, D)]}

S:

<Sunny, Warm, ?, ?, ?, ?><Sunny, ?, ?, Strong, ?, ?> <?, Warm, ?, Strong, ?, ?>

<Sunny, Warm, ?, Strong, ?, ?>{ }

G: <Sunny, ?, ?, ?, ?, ?>, <?, Warm, ?, ?, ?, ?> { }

25

Version Space Representation Theorem

Let X be an arbitrary set of instances and let H be a set of

boolean-valued hypotheses defined over X . Let c : X → {0, 1} be

an arbitrary target concept defined over X , and let D be an arbitrary

set of training examples {〈x, c(x)〉}. For all X, H, c, and D such

that S and G are well defined,

V SH,D = {h ∈ H|(∃s ∈ S)(∃g ∈ G)(g ≥g h ≥g s)}

Proof hint: g ∈ G cannot be satisfied by any negative example, and

s ∈ S must be satisfied by all positive examples.

26

G and S Revisited

• G: set of most general hypotheses consistent with D

– Any more general then it will become inconsistent.

– It will then start returning 1 for negative examples.

– That is, it will generate error on negative examples.

• S: set of most specific hypotheses consistent with D.

– Any more specific then it will become inconsistent.

– It will then start returning 0 for positive examples.

– That is, it will generate error on positive examples.

27

Candidate Elimination Algorithm: Basic Concept

+
++

+
−

−
−

−
−

− − − − − − −−
−

−
−

−
−

−− −− − −
−

G

S

• If negative example is misclassified by hypotheses in G, reduce

the scope (make more specific).

• If positive example is misclassified by hypotheses in S, increase

the scope (make more general).

28

Candidate Elimination Algorithm
G ← maximally general hypotheses in H : 〈?, ?, ?, ?, ?, ?〉
S ← maximally specific hypotheses in H : 〈∅, ∅, ∅, ∅, ∅, ∅〉

For each training example d, do

• If d is a positive example

– Remove from G any hypothesis inconsistent with d

– For each hypothesis s in S that is not consistent with d

∗ Remove s from S

∗ Add to S all minimal generalizations h of s such that

1. h is consistent with d, and

2. some member of G is more general than h

∗ Remove from S any hypothesis that is more general than another hypothesis in S

• If d is a negative example

– Remove from S any hypothesis inconsistent with d

– For each hypothesis g in G that is not consistent with d

∗ Remove g from G

∗ Add to G all minimal specializations h of g such that

1. h is consistent with d, and

2. some member of S is more specific than h

∗ Remove from G any hypothesis that is less general than another hypothesis in G

29

Example
Ex Num Sky Temp Humid Wind Water Forecst EnjoySpt

1 Sunny Warm Normal Strong Warm Same Yes

2 Sunny Warm High Strong Warm Same Yes

3 Rainy Cold High Strong Warm Change No

4 Sunny Warm High Strong Cool Change Yes

Initial S0 = {∅, ∅, ∅, ∅, ∅, ∅}, G0 = {〈?, ?, ?, ?, ?, ?〉}.

• After example 1:

S1 = {〈Sunny, Warm, Normal, Strong, Warm, Same〉}

• After example 2:

S2 = {〈Sunny, Warm, ?, Strong, Warm, Same〉}

Note that G0 = G1 = G2, i.e., no change.

30

Example (cont’d)

Ex Num Sky Temp Humid Wind Water Forecst EnjoySpt

1 Sunny Warm Normal Strong Warm Same Yes

2 Sunny Warm High Strong Warm Same Yes

3 Rainy Cold High Strong Warm Change No

4 Sunny Warm High Strong Cool Change Yes

S2 = {〈Sunny, Warm, ?, Strong, Warm, Same〉}, and

G2 = {〈?, ?, ?, ?, ?, ?〉}.

• After example 3, a negative example, G gets updated:

G3 = {〈Sunny, ?, ?, ?, ?, ?〉, 〈?, Warm, ?, ?, ?, ?〉

〈?, ?, ?, ?, ?, Same〉}
• Question: Why didn’t 〈?, ?, Normal, ?, ?, ?〉 etc. get added to

G?: See the “more specific than” condition.

31

Example (cont’d)

Ex Num Sky Temp Humid Wind Water Forecst EnjoySpt

1 Sunny Warm Normal Strong Warm Same Yes

2 Sunny Warm High Strong Warm Same Yes

3 Rainy Cold High Strong Warm Change No

4 Sunny Warm High Strong Cool Change Yes

S3 = {〈Sunny, Warm, ?, Strong, Warm, Same〉}, and

G3 = {〈Sunny, ?, ?, ?, ?, ?〉, 〈?, Warm, ?, ?, ?, ?〉, 〈?, ?, ?, ?, ?, Same〉}.

• After example 4:

S4 = {〈Sunny, Warm, ?, Strong, ?, ?〉}

G4 = {〈Sunny, ?, ?, ?, ?, ?〉, 〈?, Warm, ?, ?, ?, ?〉}

• Both S and G got updated.

32

Example: Resulting Version Space

S:

<Sunny, Warm, ?, ?, ?, ?><Sunny, ?, ?, Strong, ?, ?> <?, Warm, ?, Strong, ?, ?>

<Sunny, Warm, ?, Strong, ?, ?>{ }

G: <Sunny, ?, ?, ?, ?, ?>, <?, Warm, ?, ?, ?, ?> { }

• S4 and G4 specify the tightest boundary.

33

Candidate-Elimination: Discussion

• Convergence: Algorithm converges if

– Training examples are correct.

– H includes the target concept represented by the training

examples.

• Generating further training examples (exploration by the learner):

– Want to test with a training example that can effectively

narrow down the represented version space.

• Use of partially learned concepts in classifying new instances?

– If every h in V S classifies an instance as positive, then say

“Yes” (test if consistent with every h in S).

– If every h in V S classifies an instance as negative, then say

“No” (test if inconsistent with every h in G).

34

Inductive Bias

• What if the target concept is not included in H?

• How can we extend H in such a case?

• How does increasing the size of H affect generalization?

35

Biased Hypothesis Space

• If target concept is not in H , enrich the hypothesis space.

• The conjunctions-of-attributes hypothesis space is very limited, so

it cannot include disjunctive target concepts such as

“Sky = Sunny ∨ Sky = Cloudy”.
Ex Num Sky Temp Humid Wind Water Forecst EnjoySpt

1 Sunny Warm Normal Strong Cool Change Yes

2 Cloudy Warm Normal Strong Cool Change Yes

3 Rainy Warm Normal Strong Cool Change No

• Most specific h in conjunctive H given examples 1 and 2 will

misclassify example 3.

• Bias in the selection of H led to this problem.

• In other words, learning can be limited by the bias.

36

An Unbiased Learner

• Can be unbiased if H is large enough, to include any subset of

the instances of X.

• |X| = 96, for conjunction of attributes. The number of subsets

= 2|X| = 296 ∼ 1028.

• Allow arbitrary use of ∨, ∧, and ¬.

• Problem: learned concept cannot be generalized—learned

hypothesis will exactly represent the given instances and no other.

37

Futility of Bias-Free Learning

“... a learner that makes no a priori assumptions regarding the identity of the

target concept has no rational basis for classifying any unseen instances.”

• Concept learning algorithm L; instances X , target concept c

• training examples Dc = {〈x, c(x)〉}

• let L(xi, Dc) denote the classification assigned to the instance xi by L

after training on data Dc .

The inductive bias of L is any minimal set of assertions B such that for any

target concept c and corresponding training examples Dc

(∀xi ∈ X)[(B ∧ Dc ∧ xi) ` L(xi, Dc)]

where A ` B means B logically entails from A (B is provable from A).

Note: (Dc ∧ xi) ` L(xi, Dc) may not always be the case.

38

Comparing Inductive Bias

By comparing inductive biases, learning algorithms can be categorized:

• Rote-Learner: no inductive bias

• Candidate-Elimination: target concept c is contained in H .

• Find-S: on top of c ∈ H , all instances are negative unless the

opposite is entailed by its other knowledge.

39

