Concept Learning Concept

e Positive and negative examples e C(Classification of things into discrete categories, or discrete (many
e . . times binary) decisions.
e General-to-specific ordering (partial order)
. . e Description of a small subset within a larger set.
e Inductive learning
, e Boolean-valued function from the set to {T'rue, False}: e.q.,
e Hypothesis space . , L .
an element in the set is mapped to true if bird, and false if not.
e \ersion space . . o
e Problem: automatically infer the general definition of some
e Inductive bias concept, given labeled examples
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Concept Learning EnjoySport domain
Ex Num Sky Temp Humid Wind Water Forecst EnjoySpt
Ex Num Sky Temp Humid Wind Water Forecst EnjoySpt
1 Sunny Warm Normal Strong Warm Same Yes
1 Sunny Warm Normal Strong Warm Same Yes 5 Sunny Warm High Strong Warm Same Yes
2 Sunny Warm High Strong Warm Same Yes 3 Rainy Cold High Strong Warm Change No
8 Rainy Cold High Strong Warm Change No 4 Sunny Warm High Strong Cool Change Yes
4 Sunny Warm High Strong Cool Change Yes
_ ] . o Sky € {Sunny, Cloudy, Rainy}
e |Inferring a boolean-valued function from training examples
consisting of input and output. o AirTemp € {Warm,Cold}
e Example: “Days on which my friend enjoys his favorite water o Humidity € {Normal, ngh}
sport” e Wind € {Strong, Weak}
e Task: given a set of examples with attributes and decisions, o Water € {Warm, Cool}
want to predict the decision for an arbitrary date. e Forecast € {Same, Change}
e EnjoySport € {Yes, No}




Hypothesis: Conjunction of Constraints Conjunctive Hypothesis

Ex Num Sky Temp Humid Wind Water Forecst EnjoySpt
1 Sunny Warm Normal Strong Warm Same Yes e Given hypothesis h — <h17 hQ, hg, h47 h5, h6>’
2 Sunny Warm High Strong Warm Same Yes d | < >
n n exam r = (T xr xr X4,X5,I¢6)-
3 Rainy Cold High Strong Warm Change No a an exampie 1,42,43,L4,L5, L6
4 Sunny Warm High Strong Cool Change Yes

h(m) = [(hl = xl) V (hl :?)]/\[(hg = .1‘2) V (hQ :?)]/\...
o Need to decide the form of hypothesis: conjunction of constraints

may be one. e Note that if any /; is (), then h(z) = O for all .
® A six-element vector, where each element can be: e Example x satisfies hypothesis h if h(x) = 1, regardless of the
— Attribute value, decision.
— “?” (any value is allowed), or
“()” (no value is acceptable).
e Sample x = (Sunny, Cold, High, Warm, Same) would
satisfy the hypothesis h = (7, C'old, High,?,7,7): that s,

h(z) = 1.
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Examples Terminology
X from training set D
Ex Num Sky Temp Humid Wind Water Forecst EnjoySpt
1 Sunny Warm Normal Strong Warm Same Yes {0’1 }
2 Sunny Warm High Strong Warm Same Yes c(x)
3 Rainy Cold High Strong Warm Change No
4 Sunny Warm High Strong Cool Change Yes

All examples above would:

not from training set D

e satisfy the hypothesis <Sunny’ Warm, ?7 ?’ ?7 ?>’ except for e set of instances X : the set from which examples are drawn from. Note

example 3. that training my happen on a subset of this set.

e target concept: concept or function to be learned, given X, a set of
instances: ¢ : X — {0,1} ¢(X) = 1if EnjoySport =*Yes”,
and
c¢(X) = 0if EnjoySport =*No.

e satisfy the hypothesis (7,7, 7,7, 7, 7), regardless of the
negative example (EnjoySport = No).

e not satisfy the hypothesis (0, (), 0, (), 0, (), or any hypothesis
containing (). e set of training examples D: examples x drawn from X, together with the
concept value c(x) € {0, 1}: (z, c(z))

— Positive example: ¢(x) = 1, Negative example: ¢(z) = 0

8



Terminology (Cont’d)
X

from training set D

{01}
c(®)

not from training set D

e Goal: find h(x) = c¢(z) forallx € X (i.e., includes ¥ in the figure
above).
e Whatif domain(D) = X?
- Regardless of c(x), learning is trivial: just keep a look-up table for all
possible .

- (?,7,7,...,7) may not work, because there may be negative
examples

- Note: D = {(z, ¢(x))|x is a training sample }
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Concept Learning as Search

e Given a set of hypotheses h.; (), can we find one that holds
hi(x) = c(x)? This is basically a search problem.

o Choice of representation for hypotheses determine the
hypothesis space:

- In EnjoySport,3 X 2 X 2 X 2 X 2 X 2 = 96 possible
combination of attributes (each attribute can take on 3, 2, 2, ...

distinct values).

— The choice of a conjunction of constraints hypothesis
gives b X 4 X 4 x 4 x 4 x 4 = 5120 syntactically
distinct hypotheses (attribute values plus “?” and “(0)").

e Onlyl +4 X3 X 3xX3xX3x3 =973 semantically
distinct hypotheses (ignore all that contain (), except for

0,0,0,0,0,0).
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Inductive Learning Hypothesis

Hypothesis h derived from the training set can only fit the given

data.

That is, output hypothesis fits the target concept over the training

set, at best.

Assumption: hypothesis that fits the observed data may also fit

unseen data.

The inductive learning hypothesis: “Any hypothesis found to
approximate the target function well over a sufficiently large set of
training examples will also approximate the target function well

over other unobserved examples.”
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General-to-Specific Ordering

A useful structure exists in concept learning problem: a
general-to-specific ordering, which allows you to conduct efficient
search even in an infinite hypothesis space.

Example: ho is more general than i
- h1 = (Sunny,?,?, Strong,?,7)
- hg = (Sunny,?,?7,7,7,7)
Definition:

Let i and h, be boolean functions defined over X. Then, ; is
more_general_than_or_equal_to /1, (written h; >4 hy) iff

(Vo € X) [(hi(z) = 1) — (h;(z) = 1)]
hj >g h}: strictly more_general_than

more specific, etc. 12



General-to-Specific Ordering

Instances X Hypotheses H

Specific

General

X\= <Sunny, Warm, High, Strong, Cool, Same>
= <Sunny, Warm, High Light, Warm, Same>

o Within the boundary: positive; Outside the boundary: negative.

o More general: more examples classified as positive.

® >, (—) forms a partial order over the hypotheses (reflexive,
antisymmetric, and transitive).

e Some pairs may have no > relation at all.
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Find-S: Example
Ex Num Sky Temp Humid Wind Water Forecst EnjoySpt

1 Sunny Warm Normal Strong Warm Same Yes
2 Sunny Warm High Strong Warm Same Yes
3 Rainy Cold High Strong Warm Change No
4 Sunny Warm High Strong Cool Change Yes

Specific ) — {Sunny, Warm, etc.} — to General.
Example:
e Beginwith b = (0, 0,0,0,0,0).

o Take example 1 from the table above: let’s call this x.

e h(x) = 0, so replace each a; in h with more general ones so

that h is satisfied by x (i.e. h(x) = 1).

h «— (Sunny, Warm, Normal, Strong, Warm, Same)
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Find-S: Find Maximally Specific Hypothesis

e |Initialize A to the most specific hypothesis in H .

e For each positive training instance

— For each attribute constraint a; in h,
If the constraint is satisfied by x;
Then do nothing
Else replace a; in h by the next more general constraint that
is satisfied by x.

e Output hypothesis h.
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Find-S: Example

Ex Num Sky Temp Humid Wind Water Forecst EnjoySpt
1 Sunny Warm Normal Strong Warm Same Yes
2 Sunny Warm High Strong Warm Same Yes
3 Rainy Cold High Strong Warm Change No
4 Sunny Warm High Strong Cool Change Yes
Start with

(Sunny, Warm, Normal, Strong, Warm, Same):
e Take example 2 from the table above (call it x).
e h(x) = 0, so generalize conflicting constraints.

h «— (Sunny, Warm,?, Strong, Warm, Same)
o Take example 3: nothing happens, because it's a negative
example (current h is already consistent: h(x3) = c¢(x3))

e Take example 4: h «— (Sunny, Warm,?, Strong,?,7)
16



Find-S: Example

Instances X Hypotheses H

Specific

General

hy= <2.2,0, 3,9,D>

x| = <Sunny Warm Normal Strong Warm Sames, +  hy = <Sunny Warm Normal Strong Warm Same>

Xy = <Sunny Warm High Strong Warm Same>, + hy = <Sunny Warm ? Strong Warm Same>
X3 = <Rainy Cold High Strong Warm Change>, - l13 = <Sunny Warm ? Strong Warm Same>
x, = <Sunny Warm High Sirong Cool Change>, + Iy = <Sunny Warm ? Strong ? ? >

e Use of the more_general_than partial ordering to organize the
search: move from hypothesis to hypothesis, from specific to
general.

e Each positive example can potentially change the current
hypothesis, from specific (top) to general (bottom).
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Version Space and Candidate-Elimination Algorithm

o The set of all hypotheses consistent with the examples is called
the version space. (Note: / does not need to be maximally
specific.)

e Thus, the version space is a subset of the hypothesis space H.

o How can we represent the version space?: One way is to

enumerate all hypotheses consistent with the examples.

e Candidate-Elimination algorithm can output a description of the
version space, without enumerating all the hypotheses.
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Find-S: Properties and Limitations

Generalize only as far as necessary to account for the examples (the

most specific hypothesis that is consistent with the examples).

Limitations: In general,

There can be other consistent hypotheses.
Why only the most specific hypothesis?
Can't tell whether the training data is inconsistent.

Depending on H, there might be several maximally specific
hypotheses.
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Definition of Terms

Consistent: A hypothesis is consistent with a set of training
examples D iff h(x) = ¢(x) forall (z, c(x)) € D

Consistent(h, D) = (V(z,c(z)) € D)h(z) = c(x)
Cf. x satisfies h if h(z) = 1, whether or not c(z) = 1.

Version space: The version space VSH,D, with respect to
hypothesis space /1 and training examples D, is:

VSu p ={h € H|Consistent(h, D)}

20



List-Then-Eliminate Algorithm

e Algorithm
-VS—H

— Foreach (x,c(x)) € D
remove from V.S any hypothesis h for which h(z) # c(x)

— Output the list of hypotheses in V'.S.

e Evaluation

— Problem: Can’t cope with infinite hypothesis space. Need to

enumerate all.

— Merit: guaranteed to output all consistent hypotheses, if H is

finite.
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G and S
Ex Num Sky Temp Humid Wind Water Forecst EnjoySpt
1 Sunny Warm Normal Strong Warm Same Yes
2 Sunny Warm High Strong Warm Same Yes
3 Rainy Cold High Strong Warm Change No
4 Sunny Warm High Strong Cool Change Yes

S: | { <Sunny, Warm, ?, Strong, ?, 7>} |

/\

<Sunny, ?, ?, Strong, ?, 7> <Sunny, Warm, ?, ?, ?, ?> <7, Warm, ?, Strong, ?, 7>

N \/

G: | {<Sunny, ?, 2, 2, 2, 7>, <?, Warm, ?, 2, 7, 7>}

Note: There can be more than one h in (G.
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Compact Representation of /.S

e Just keep two small hypothesis sets (G and S to mark the
boundary of the version space.
e (5: set of most general hypotheses consistent with 1)

— Any more general then become inconsistent.

e S set of most specific hypotheses consistent with 1.

— Any more specific then become inconsistent.

S: | { <Sunny, Warm, ?, Strong, ?, ?>} |

/\

<Sunny, ?, ?, Strong, ?, 7> <Sunny, Warm, ?, ?, 7, 7> <?, Warm, ?, Strong, ?, 7>

\/ \/

{<Sunny, 2, 2, 2, 2, 7>, <?, Warm, ?, 2, 2, ?>}
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Property of G and S

S: | { <Sunny, Warm, ?, Strong, ?, 7>} |

/\

<Sunny, ?, ?, Strong, ?, 7> <Sunny, Warm, ?, ?, 7, 7> <?, Warm, ?, Strong, ?, ?>

\/ \/

{<Sunny, 2, 2, 2, 2, 7>, <?, Warm, ?, 2, 2, 2>}

e Given the two sets (5 and .S, we can easily find all members of
the version space by generating the hypotheses that lie between
(& and S in the general-to-specific partial ordering.

24



Formal Definition of G and .S Version Space Representation Theorem

e General Boundary (=, with respect to /1 and D:

Let X be an arbitrary set of instances and let H be a set of
G = {g € H|Consistent(g, D)

boolean-valued hypotheses defined over X . Letc : X — {0, 1} be

AN—=39" € H)[(g' >4 g) N Consistent(g’, D)]} an arbitrary target concept defined over X, and let D be an arbitrary

e Specific Boundary S: set of training examples { (z, ¢(x)) }. Forall X, H, ¢, and D such

S = {s¢& H|Consistent(s, D) that S and (& are well defined,

A(—3s' € H)|[(s >, §') A Consistent(s', D)]} VSup={heH|3seS)(3ge@)g>yh>45)}

s: |K<Sunn% Warm, 2, Strong, 2, 7> l| Proof hint: g € (G cannot be satisfied by any negative example, and

/ \ s € S must be satisfied by all positive examples.
<Sunny, ?, ?, Strong, ?, 7> <Sunny, Warm, ?, 2, 2, 7> <?, Warm, ?, Strong, ?, 7>
G| {<Sunny, 2, 2, 2, 2, ?>, <?, Warm, ?, 2, 2, 7>}
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(G and S Revisited Candidate Elimination Algorithm: Basic Concept

e (5: set of most general hypotheses consistent with 1)
— Any more general then it will become inconsistent.
— It will then start returning 1 for negative examples.

— That s, it will generate error on negative examples.

e S set of most specific hypotheses consistent with 1.

— Any more specific then it will become inconsistent.
— ltwill then start returning 0 for positive examples. e If negative example is misclassified by hypotheses in (7, reduce
— That s, it will generate error on positive examples. the scope (make more specific).

e |If positive example is misclassified by hypotheses in S, increase
the scope (make more general).
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Candidate Elimination Algorithm Example

G «— maximally general hypotheses in F: (7, 7,7, 7,7, 7) Ex Num Sky Temp Humid Wind Water Forecst EnjoySpt
S« maximally specific hypotheses in H: (0, 0, 0, 0, @, 0) 1 Sunny Warm Normal Strong Warm Same Yes
For each training example d, do 2 Sunny Warm High Strong Warm Same Yes
® If d is a positive example 3 Rainy Cold High Strong Warm Change No
— Remove from GG any hypothesis inconsistent with d 4 Sunny Warm High Strong Cool Change Yes

— For each hypothesis s in \S' that is not consistent with d .
Initial So = {0,0,0,0,0,0}, Go = {(?,7,7,7,7,7) }.

* Remove s from S

* Addto S all minimal generalizations h of s such that

1. his consistent with d, and o After example 1:
2. some member of G is more general than h
* Remove from S any hypothesis that is more general than another hypothesis in S Sl — { <Sunny, Warm, Normal, St’r’ong’ V‘/v(l”r’?’)’L7 Same> }
e If d is a negative example
— Remove from .S any hypothesis inconsistent with d e After example 2:
- For each hypothesis g in GG that is not consistent with d
* Remove g from G So = {(Sunny, Warm,?, Strong, Warm, Same) }

* Addto (G all minimal specializations /2 of g such that
1. h is consistent with d, and .
2. some member of S is more specific than A Note that GO = Gl = GQ, 1.e., no change.

* Remove from (G any hypothesis that is less general than another hypothesis in G
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Example (cont’d) Example (cont’d)
Ex Num Sky Temp Humid Wind Water Forecst EnjoySpt Ex Num Sky Temp Humid Wind Water Forecst EnjoySpt

1 Sunny Warm Normal Strong Warm Same Yes 1 Sunny Warm Normal Strong Warm Same Yes

2 Sunny Warm High Strong Warm Same Yes 2 Sunny Warm High Strong Warm Same Yes

3 Rainy Cold High Strong Warm Change No 3 Rainy Cold High Strong Warm Change No

4 Sunny Warm High Strong Cool Change Yes 4 Sunny Warm High Strong Cool Change Yes
So = {(Sunny, Warm,?, Strong, Warm, Same)}, and S3 = {{(Sunny, Warm,?, Strong, Warm, Same) }, and
Go={(?,7,7,7,7,7) }. Gs = {(Sunny,?,?7,7,7,7),(?, Warm,?,?7,7,7),(?,7,7,7,7, Same) }.

e After example 3, a negative example, (&' gets updated: e After example 4:
Gs = {(Sunny,?,?7,7,72,7),(?,Warm,?,7,7,7) Sa = {(Sunny, Warm,?, Strong,?,7)}

(?7,7,7,7,7, Same)}
e Question: Why didn't (7, 7, Normal,?,7,7) etc. get added to
(3?: See the “more specific than” condition. e Both S and (& got updated.

Gq = {(Sunny,?,7,72,7,7),(?, Warm,?,?7,7,7)}
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Example: Resulting Version Space

S: | { <Sunny, Warm, ?, Strong, ?, 7>} |

/\

<Sunny, ?, ?, Strong, ?, 7> <Sunny, Warm, ?, ?, 2, 7> <?, Warm, ?, Strong, ?, 7>

NN S

G:| {<Sunny, 2,2, 2,2, 72> <2, Warm, ?, 2, 2, 7>}

e S, and (G4 specify the tightest boundary.
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Inductive Bias

e What if the target concept is not included in H ?
e How can we extend H in such a case?

e How does increasing the size of H affect generalization?
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Candidate-Elimination: Discussion

o Convergence: Algorithm converges if
— Training examples are correct.
— H includes the target concept represented by the training
examples.
e Generating further training examples (exploration by the learner):
— Want to test with a training example that can effectively
narrow down the represented version space.
o Use of partially learned concepts in classifying new instances?

— Ifevery h in VS classifies an instance as positive, then say
“Yes” (test if consistent with every A in S).

— Ifevery h in VS classifies an instance as negative, then say
“No” (test if inconsistent with every h in G3).
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Biased Hypothesis Space

If target concept is not in H, enrich the hypothesis space.

® The conjunctions-of-attributes hypothesis space is very limited, so

it cannot include disjunctive target concepts such as
“Sky = Sunny V Sky = Cloudy’.

Ex Num Sky Temp Humid Wind Water Forecst EnjoySpt
1 Sunny Warm Normal Strong Cool Change Yes
2 Cloudy Warm Normal Strong Cool Change Yes
3 Rainy Warm Normal Strong Cool Change No

e Most specific /. in conjunctive /' given examples 1 and 2 will
misclassify example 3.

e Bias in the selection of H led to this problem.

e In other words, learning can be limited by the bias.
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An Unbiased Learner

e Can be unbiased if H is large enough, to include any subset of
the instances of X.

e | X| =96, for conjunction of attributes. The number of subsets
= 2IX1 =296 ~ 1028,

o Allow arbitrary use of VV, /\, and —.

o Problem: learned concept cannot be generalized—Ilearned

hypothesis will exactly represent the given instances and no other.
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Comparing Inductive Bias

By comparing inductive biases, learning algorithms can be categorized:

o Rote-Learner: no inductive bias
e Candidate-Elimination: target concept c is contained in H.

e Find-S: ontop of ¢ € H, all instances are negative unless the
opposite is entailed by its other knowledge.
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Futility of Bias-Free Learning

“... a learner that makes no a priori assumptions regarding the identity of the
target concept has no rational basis for classifying any unseen instances.”

e Concept learning algorithm L; instances X, target concept c
e training examples D. = {(x, c¢(x)) }

e let L(x;, D.) denote the classification assigned to the instance x; by L
after training on data D ..

The inductive bias of L is any minimal set of assertions B such that for any
target concept ¢ and corresponding training examples D ..

(Vz, € X)[(BA D ANx;) b L(xs, D)

where A = B means B logically entails from A (B is provable from A).
Note: (D. A x;) = L(z;, D.) may not always be the case.
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