Concept Learning

- Positive and negative examples
- General-to-specific ordering (partial order)
- Inductive learning
- Hypothesis space
- Version space
- Inductive bias

Concept

- Classification of things into discrete categories, or discrete (many times binary) decisions.
- Description of a small subset within a larger set.
- Boolean-valued function from the set to {*True*, *False*}: e.g., an element in the set is mapped to true if bird, and false if not.
- Problem: automatically infer the general definition of some concept, given labeled examples

2

Concept Learning

1

Ex Num	Sky	Temp	Humid	Wind	Water	Forecst	EnjoySpt
1	Sunny	Warm	Normal	Strong	Warm	Same	Yes
2	Sunny	Warm	High	Strong	Warm	Same	Yes
3	Rainy	Cold	High	Strong	Warm	Change	No
4	Sunny	Warm	High	Strong	Cool	Change	Yes

- Inferring a **boolean-valued function** from training examples consisting of input and output.
- Example: "Days on which my friend enjoys his favorite water sport."
- Task: given a set of examples with **attributes** and **decisions**, want to **predict** the decision for an arbitrary date.

EnjoySport domain

Ex Num	Sky	Temp	Humid	Wind	Water	Forecst	EnjoySpt
1	Sunny	Warm	Normal	Strong	Warm	Same	Yes
2	Sunny	Warm	High	Strong	Warm	Same	Yes
3	Rainy	Cold	High	Strong	Warm	Change	No
4	Sunny	Warm	High	Strong	Cool	Change	Yes

- $Sky \in \{Sunny, Cloudy, Rainy\}$
- $AirTemp \in \{Warm, Cold\}$
- $Humidity \in \{Normal, High\}$
- $Wind \in \{Strong, Weak\}$
- $Water \in \{Warm, Cool\}$
- $Forecast \in \{Same, Change\}$
- $EnjoySport \in \{Yes, No\}$

Hypothesis: Conjunction of Constraints

Ex Num	Sky	Temp	Humid	Wind	Water	Forecst	EnjoySpt
1	Sunny	Warm	Normal	Strong	Warm	Same	Yes
2	Sunny	Warm	High	Strong	Warm	Same	Yes
3	Rainy	Cold	High	Strong	Warm	Change	No
4	Sunny	Warm	High	Strong	Cool	Change	Yes

- Need to decide the form of hypothesis: conjunction of constraints may be one.
- A six-element vector, where each element can be:
 - Attribute value,
 - "?" (any value is allowed), or
 - " \emptyset " (no value is acceptable).
- Sample $x = \langle Sunny, Cold, High, Warm, Same \rangle$ would satisfy the hypothesis $h = \langle ?, Cold, High, ?, ?, ? \rangle$: that is, h(x) = 1.

5

Examples

Ex Num	Sky	Temp	Humid	Wind	Water	Forecst	EnjoySpt
1	Sunny	Warm	Normal	Strong	Warm	Same	Yes
2	Sunny	Warm	High	Strong	Warm	Same	Yes
3	Rainy	Cold	High	Strong	Warm	Change	No
4	Sunny	Warm	High	Strong	Cool	Change	Yes

All examples above would:

- satisfy the hypothesis (Sunny, Warm, ?, ?, ?, ?), except for example 3.
- satisfy the hypothesis $\langle ?, ?, ?, ?, ?, ? \rangle$, regardless of the negative example (EnjoySport = No).
- not satisfy the hypothesis ⟨∅, ∅, ∅, ∅, ∅, ∅, ∅⟩, or any hypothesis containing ∅.

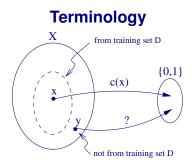
Conjunctive Hypothesis

• Given hypothesis $h = \langle h_1, h_2, h_3, h_4, h_5, h_6 \rangle$, and an example $x = \langle x_1, x_2, x_3, x_4, x_5, x_6 \rangle$:

 $h(x) = [(h_1 = x_1) \lor (h_1 = ?)] \land [(h_2 = x_2) \lor (h_2 = ?)] \land \dots$

- Note that if any h_i is \emptyset , then h(x) = 0 for all x.
- Example x satisfies hypothesis h if $h(x) = 1, {\rm regardless}$ of the decision.

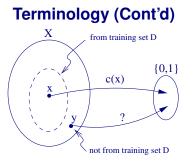
6



- set of **instances** X: the set from which examples are drawn from. Note that training my happen on a subset of this set.
- target concept: concept or function to be learned, given X, a set of instances: $c:X\to\{0,1\}$ c(X)=1 if EnjoySport="Yes", and

c(X) = 0 if EnjoySport ="No".

- set of training examples D: examples x drawn from X, together with the concept value $c(x) \in \{0, 1\}$: $\langle x, c(x) \rangle$
 - Positive example: $c(x) = 1_{\mathbf{k}}$ Negative example: c(x) = 0



- Goal: find h(x) = c(x) for all $x \in X$ (i.e., includes y in the figure above).
- What if domain(D) = X?
 - Regardless of c(x), learning is trivial: just keep a look-up table for all possible x.
 - $\langle ?, ?, ?, ..., ? \rangle$ may not work, because there may be **negative** examples
 - Note: $D = \{ \langle x, c(x) \rangle | x \text{ is a training sample} \}$

9

Concept Learning as Search

- Given a set of hypotheses $h_i(x)$, can we find one that holds $h_i(x) = c(x)$? This is basically a search problem.
- Choice of representation for hypotheses determine the hypothesis space:
 - In EnjoySport, $3 \times 2 \times 2 \times 2 \times 2 \times 2 = 96$ possible combination of attributes (each attribute can take on 3, 2, 2, ... distinct values).
 - The choice of a conjunction of constraints hypothesis gives $5 \times 4 \times 4 \times 4 \times 4 \times 4 = 5120$ syntactically distinct hypotheses (attribute values plus "?" and " \emptyset ").
- Only 1 + 4 × 3 × 3 × 3 × 3 × 3 = 973 semantically distinct hypotheses (ignore all that contain Ø, except for ⟨Ø, Ø, Ø, Ø, Ø, Ø).

Inductive Learning Hypothesis

- Hypothesis *h* derived from the training set can only fit the given data.
- That is, output hypothesis fits the target concept over the training set, at best.
- Assumption: hypothesis that fits the observed data may also fit unseen data.
- The inductive learning hypothesis: "Any hypothesis found to approximate the target function well over a sufficiently large set of training examples will also approximate the target function well over other unobserved examples."

10

General-to-Specific Ordering

- A useful structure exists in concept learning problem: a general-to-specific ordering, which allows you to conduct efficient search even in an infinite hypothesis space.
- Example: h_2 is more general than h_1

$$-h_1 = \langle Sunny, ?, ?, Strong, ?, ? \rangle$$

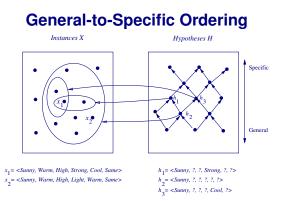
-
$$h_2 = \langle Sunny, ?, ?, ?, ?, ? \rangle$$

Definition:

• Let h_j and h_k be boolean functions defined over X. Then, h_j is more_general_than_or_equal_to h_k (written $h_j \ge_g h_k$) iff

 $(\forall x \in X) \left[(h_k(x) = 1) \to (h_j(x) = 1) \right]$

- $h_j >_g h_k$: strictly more_general_than
- more specific, etc.



- Within the boundary: positive; Outside the boundary: negative.
- More general: more examples classified as positive.
- ≥_g (→) forms a partial order over the hypotheses (reflexive, antisymmetric, and transitive).
- Some pairs may have no \geq_g relation at all.

13

Find-S: Example

[Ex Num	Sky	Temp	Humid	Wind	Water	Forecst	EnjoySpt
	1	Sunny	Warm	Normal	Strong	Warm	Same	Yes
	2	Sunny	Warm	High	Strong	Warm	Same	Yes
	3	Rainy	Cold	High	Strong	Warm	Change	No
	4	Sunny	Warm	High	Strong	Cool	Change	Yes

 $\mathsf{Specific}\, \emptyset \to \{Sunny, Warm, etc.\} \to \mathsf{to} \; \mathsf{General}.$

Example:

- Begin with $h = \langle \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset \rangle$.
- Take example 1 from the table above: let's call this *x*.
- h(x) = 0, so replace each a_i in h with more general ones so that h is satisfied by x (i.e. h(x) = 1).
 - $h \leftarrow \langle Sunny, Warm, Normal, Strong, Warm, Same \rangle$

Find-S: Find Maximally Specific Hypothesis

- Initialize h to the most specific hypothesis in H.
- For each positive training instance x
 - For each attribute constraint a_i in h,
 - If the constraint is satisfied by x_i
 - Then do nothing
 - Else replace a_i in h by the next more general constraint that is satisfied by x.
- Output hypothesis h.

14

Find-S: Example

Ex Num	Sky	Temp	Humid	Wind	Water	Forecst	EnjoySpt
1	Sunny	Warm	Normal	Strong	Warm	Same	Yes
2	Sunny	Warm	High	Strong	Warm	Same	Yes
3	Rainy	Cold	High	Strong	Warm	Change	No
4	Sunny	Warm	High	Strong	Cool	Change	Yes

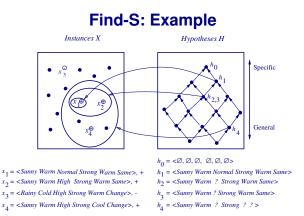
Start with

 $\langle Sunny, Warm, Normal, Strong, Warm, Same \rangle$:

- Take example 2 from the table above (call it *x*).
- h(x) = 0, so generalize conflicting constraints.

 $h \leftarrow \langle Sunny, Warm, ?, Strong, Warm, Same \rangle$

- Take example 3: nothing happens, because it's a **negative** example (current *h* is already consistent: $h(x_3) = c(x_3)$)
- Take example 4: $h \leftarrow \langle Sunny, Warm, ?, Strong, ?, ? \rangle$



- Use of the more_general_than partial ordering to organize the search: move from hypothesis to hypothesis, from specific to general.
- Each positive example can potentially change the current hypothesis, from specific (top) to general (bottom).

17

Version Space and Candidate-Elimination Algorithm

- The set of all hypotheses consistent with the examples is called the **version space**. (Note: *h* does not need to be maximally specific.)
- Thus, the version space is a **subset** of the hypothesis space *H*.
- How can we represent the version space?: One way is to enumerate all hypotheses consistent with the examples.
- Candidate-Elimination algorithm can output a description of the version space, without enumerating all the hypotheses.

Find-S: Properties and Limitations

Generalize only as far as necessary to account for the examples (the most specific hypothesis that is consistent with the examples).

Limitations: In general,

- There can be other consistent hypotheses.
- Why only the most specific hypothesis?
- Can't tell whether the training data is inconsistent.
- Depending on *H*, there might be several maximally specific hypotheses.

18

Definition of Terms

• Consistent: A hypothesis is consistent with a set of training examples D iff h(x) = c(x) for all $\langle x, c(x) \rangle \in D$

 $Consistent(h,D) \equiv (\forall \langle x,c(x)\rangle \in D)h(x) = c(x)$

Cf. x satisfies h if h(x) = 1, whether or not c(x) = 1.

• Version space: The version space $VS_{H,D}$, with respect to hypothesis space H and training examples D, is:

 $VS_{H,D} \equiv \{h \in H | Consistent(h, D)\}$

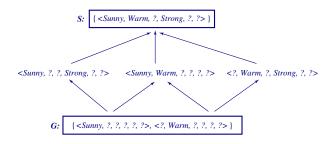
List-Then-Eliminate Algorithm

- Algorithm
 - $VS \leftarrow H$
 - For each $\langle x, c(x) \rangle \in D$ remove from VS any hypothesis h for which $h(x) \neq c(x)$
 - Output the list of hypotheses in VS.
- Evaluation
 - Problem: Can't cope with infinite hypothesis space. Need to enumerate all.
 - Merit: guaranteed to output **all** consistent hypotheses, if H is finite.

21

${\boldsymbol{G}} \text{ and } {\boldsymbol{S}}$

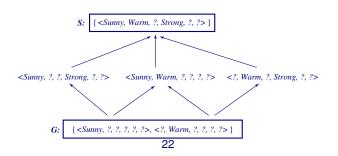
Ex Num	Sky	Temp	Humid	Wind	Water	Forecst	EnjoySpt
1	Sunny	Warm	Normal	Strong	Warm	Same	Yes
2	Sunny	Warm	High	Strong	Warm	Same	Yes
3	Rainy	Cold	High	Strong	Warm	Change	No
4	Sunny	Warm	High	Strong	Cool	Change	Yes

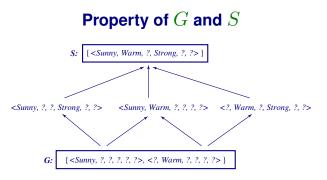


Note: There can be more than one h in G.

Compact Representation of VS

- Just keep two small hypothesis sets G and S to **mark the boundary** of the version space.
- G: set of most general hypotheses consistent with D
 - Any more general then become inconsistent.
- S: set of most specific hypotheses consistent with D.
 - Any more specific then become inconsistent.

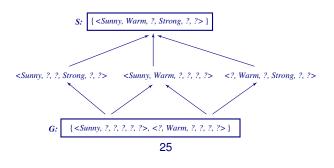




• Given the two sets *G* and *S*, we can easily find all members of the version space by generating the hypotheses that **lie between** *G* and *S* in the general-to-specific partial ordering.

Formal Definition of G and S

- General Boundary G, with respect to H and D:
 - $$\begin{split} G \equiv & \{g \in H | Consistent(g, D) \\ & \wedge (\neg \exists g' \in H) [(g' >_g g) \land Consistent(g', D)] \} \end{split}$$
- Specific Boundary S:
 - $S \equiv \{s \in H | Consistent(s, D) \\ \land (\neg \exists s' \in H) [(s >_g s') \land Consistent(s', D)] \}$



${\cal G} \mbox{ and } {\cal S} \mbox{ Revisited}$

- G: set of most general hypotheses consistent with D
 - Any more general then it will become inconsistent.
 - It will then start returning 1 for negative examples.
 - That is, it will generate error on negative examples.
- S: set of most specific hypotheses consistent with D.
 - Any more specific then it will become inconsistent.
 - It will then start returning 0 for positive examples.
 - That is, it will generate error on positive examples.

Version Space Representation Theorem

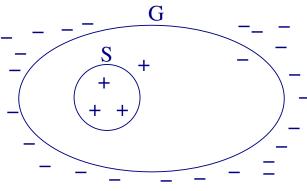
Let X be an arbitrary set of instances and let H be a set of boolean-valued hypotheses defined over X. Let $c: X \to \{0, 1\}$ be an arbitrary target concept defined over X, and let D be an arbitrary set of training examples $\{\langle x, c(x) \rangle\}$. For all X, H, c, and D such that S and G are well defined,

$$VS_{H,D} = \{h \in H | (\exists s \in S) (\exists g \in G) (g \ge_g h \ge_g s)\}$$

Proof hint: $g \in G$ cannot be satisfied by any negative example, and $s \in S$ must be satisfied by all positive examples.

26

Candidate Elimination Algorithm: Basic Concept



- If negative example is misclassified by hypotheses in *G*, reduce the scope (make more specific).
- If positive example is misclassified by hypotheses in *S*, increase the scope (make more general).

Candidate Elimination Algorithm

- $G \leftarrow \text{maximally general hypotheses in } H : \langle ?, ?, ?, ?, ?, ? \rangle$
- $S \leftarrow \text{maximally specific hypotheses in } H \colon \langle \emptyset, \, \emptyset, \, \emptyset, \, \emptyset, \, \emptyset, \, \emptyset \rangle$

For each training example d, do

- If d is a positive example
 - Remove from ${\boldsymbol{G}}$ any hypothesis inconsistent with ${\boldsymbol{d}}$
 - For each hypothesis \boldsymbol{s} in \boldsymbol{S} that is not consistent with \boldsymbol{d}
 - $* \quad \text{Remove s from S}$
 - $\ast\;\;$ Add to S all minimal generalizations h of s such that
 - 1. h is consistent with d, and
 - 2. some member of ${\boldsymbol{G}}$ is more general than ${\boldsymbol{h}}$
 - \ast $\;$ Remove from S any hypothesis that is more general than another hypothesis in S
- If d is a negative example
 - Remove from ${\cal S}$ any hypothesis inconsistent with d
 - For each hypothesis g in G that is not consistent with d
 - $* \quad \text{Remove } g \text{ from } G$
 - \ast Add to G all minimal specializations h of g such that
 - 1. h is consistent with d, and
 - 2. some member of ${\cal S}$ is more specific than h
 - \ast $\;$ Remove from G any hypothesis that is less general than another hypothesis in G

29

Example

Ex Num	Sky	Temp	Humid	Wind	Water	Forecst	EnjoySpt
1	Sunny	Warm	Normal	Strong	Warm	Same	Yes
2	Sunny	Warm	High	Strong	Warm	Same	Yes
3	Rainy	Cold	High	Strong	Warm	Change	No
4	Sunny	Warm	High	Strong	Cool	Change	Yes

Initial $S_0 = \{\emptyset, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset\}, G_0 = \{\langle ?, ?, ?, ?, ?, ? \rangle\}.$

• After example 1:

 $S_1 = \{ \langle Sunny, Warm, Normal, Strong, Warm, Same \rangle \}$

• After example 2:

 $S_2 = \{\langle Sunny, Warm, ?, Strong, Warm, Same \rangle\}$

Note that $G_0 = G_1 = G_2$, i.e., no change.

30

Example (cont'd)

Ex Num	Sky	Temp	Humid	Wind	Water	Forecst	EnjoySpt
1	Sunny	Warm	Normal	Strong	Warm	Same	Yes
2	Sunny	Warm	High	Strong	Warm	Same	Yes
3	Rainy	Cold	High	Strong	Warm	Change	No
4	Sunny	Warm	High	Strong	Cool	Change	Yes

 $S_2 = \{\langle Sunny, Warm, ?, Strong, Warm, Same \rangle\}, \text{ and } G_2 = \{\langle ?, ?, ?, ?, ?, ? \rangle\}.$

• After example 3, a negative example, G gets updated:

$$G_{3} = \{\langle Sunny, ?, ?, ?, ?, ? \rangle, \langle ?, Warm, ?, ?, ?, ? \rangle \\ \langle ?, ?, ?, ?, ?, Same \rangle \}$$

 Question: Why didn't (?, ?, Normal, ?, ?, ?) etc. get added to G?: See the "more specific than" condition.

Example (cont'd)

Ex Num	Sky	Temp	Humid	Wind	Water	Forecst	EnjoySpt
1	Sunny	Warm	Normal	Strong	Warm	Same	Yes
2	Sunny	Warm	High	Strong	Warm	Same	Yes
3	Rainy	Cold	High	Strong	Warm	Change	No
4	Sunny	Warm	High	Strong	Cool	Change	Yes

 $S_3 = \{ \langle Sunny, Warm, ?, Strong, Warm, Same \rangle \},$ and

 $G_3 = \{ \langle Sunny, ?, ?, ?, ?, ? \rangle, \langle ?, Warm, ?, ?, ?, ? \rangle, \langle ?, ?, ?, ?, Same \rangle \}.$

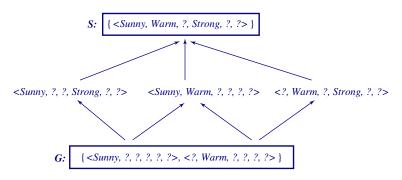
• After example 4:

 $S_4 = \{ \langle Sunny, Warm, ?, Strong, ?, ? \rangle \}$

$$G_4 = \{ \langle Sunny, ?, ?, ?, ?, ? \rangle, \langle ?, Warm, ?, ?, ?, ? \rangle \}$$

• Both S and G got updated.

Example: Resulting Version Space



• S_4 and G_4 specify the tightest boundary.

Inductive Bias

33

- What if the target concept is not included in *H*?
- How can we extend *H* in such a case?
- How does increasing the size of *H* affect generalization?

Candidate-Elimination: Discussion

- Convergence: Algorithm converges if
 - Training examples are correct.
 - *H* includes the target concept represented by the training examples.
- Generating further training examples (exploration by the learner):
 - Want to test with a training example that can effectively narrow down the represented version space.
- Use of partially learned concepts in classifying new instances?
 - If every h in VS classifies an instance as positive, then say "Yes" (test if consistent with every h in S).
 - If every h in VS classifies an instance as negative, then say "No" (test if inconsistent with every h in G).

34

Biased Hypothesis Space

- If target concept is not in H, **enrich** the hypothesis space.
- The conjunctions-of-attributes hypothesis space is very limited, so it cannot include **disjunctive** target concepts such as

" $Sky = Sunny \lor Sky = Cloudy$ ".

Ex Num	Sky	Temp	Humid	Wind	Water	Forecst	EnjoySpt
1	Sunny	Warm	Normal	Strong	Cool	Change	Yes
2	Cloudy	Warm	Normal	Strong	Cool	Change	Yes
3	Rainy	Warm	Normal	Strong	Cool	Change	No

- Most specific *h* in conjunctive *H* given examples 1 and 2 will misclassify example 3.
- **Bias** in the selection of H led to this problem.
- In other words, learning can be **limited** by the bias.

An Unbiased Learner

- Can be unbiased if *H* is large enough, to include **any subset of the instances of X**.
- |X| = 96, for conjunction of attributes. The number of subsets = $2^{|X|} = 2^{96} \sim 10^{28}$.
- Allow arbitrary use of \lor , \land , and \neg .
- Problem: learned concept cannot be generalized—learned hypothesis will exactly represent the given instances and no other.

Futility of Bias-Free Learning

"... a learner that makes no a priori assumptions regarding the identity of the target concept has no rational basis for classifying any unseen instances."

- Concept learning algorithm L; instances X, target concept c
- training examples $D_c = \{ \langle x, c(x) \rangle \}$
- let $L(x_i, D_c)$ denote the classification assigned to the instance x_i by L after training on data D_c .

The **inductive bias** of L is any minimal set of assertions B such that for any target concept c and corresponding training examples D_c

 $(\forall x_i \in X)[(B \land D_c \land x_i) \vdash L(x_i, D_c)]$

where $A \vdash B$ means B logically entails from A (B is provable from A). Note: $(D_c \land x_i) \vdash L(x_i, D_c)$ may not always be the case.

37

Comparing Inductive Bias

By comparing inductive biases, learning algorithms can be categorized:

- Rote-Learner: no inductive bias
- Candidate-Elimination: target concept *c* is contained in *H*.
- Find-S: on top of c ∈ H, all instances are negative unless the opposite is entailed by its other knowledge.

38