CPSC 633-600 (Total 100 points) Decision Tree Learning and Reinforcement Learning

See course web page for the **due date**. Use **csnet** to submit your assignments.

Instructor: Yoonsuck Choe

February 18, 2009

1 Entropy

Given a random variable X that can take on values $\{\oplus, \ominus\}$, the entropy is defined as:

$$E(X) = -\sum_{x \in \{\oplus, \ominus\}} P(X=x) \log_2 P(X=x).$$

Since $P(X = \oplus) + P(X = \oplus) = 1$, E(X) can be rewritten as a function of $P(X = \oplus)$: Letting $p_{\oplus} = P(X = \oplus)$:

$$E(X) = f(p_{\oplus}) = -p_{\oplus} \log_2 p_{\oplus} - (1 - p_{\oplus}) \log_2(1 - p_{\oplus}).$$

Figure 1 shows how $f(p_{\oplus})$ behaves as p_{\oplus} changes.

Figure 1: Entropy.

Problem 1 (Written: 5 pts): Extend the above analysis to a random variable Y that can take on values $\{\alpha, \beta, \gamma\}$. Given $p_{\alpha} = P(Y = \alpha)$, etc.,

1. Derive E(Y) as a function of p_{α} and p_{β} :

$$E(Y) = f(p_{\alpha}, p_{\beta}) = \dots$$

Note: $p_{\alpha} + p_{\beta} + p_{\gamma} = 1.0$.

- 2. For which values of p_{α} and p_{β} does E(Y) become maximal (no need to derive it exactly from $f(p_{\alpha}, p_{\beta})$ -consider when it is maximal in the 2-value case)?
- 3. Explain why.

Problem 2 (Program: 15 pts): Write a short program to calculate $f(p_{\alpha}, p_{\beta})$ derived above, and obtain the $E(Y) = f(p_{\alpha}, p_{\beta})$ values for all combinations of $p_{\alpha}, p_{\beta} \in \{0.0, 0.1, 0.2, ..., 0.9, 1.0\}$, and plot in 3D (Octave: use gsplot; Matlab: use surf; or draw by hand).

2 Decision Tree Learning (ID3)

Problem 3 (Written: 15 pts): You are trying to decide whether you want to submit your paper to a particular conference or not, based on three criterions: location of the conference, prestige of the conference, and chance of getting your paper accepted.

Example#	Location	Prestige	Chance	Submit?
1	Near	High	High	Y
2	Far	High	Medium	Y
3	Near	Okay	High	Y
4	Far	High	High	Ν
5	Near	Okay	Low	Ν
6	Far	High	High	Y
7	Far	Okay	High	Ν
8	Far	Okay	Medium	Ν
9	Near	High	High	Y
10	Far	High	Medium	Y

(1) Calculate the entropy of the following training set. (2) Calculate the information gain for each of the three attributes, *Location*, *Prestige*, and *Chance*. (3) Which one is the best attribute to test first?

3 Reinforcement Learning: Deterministic Case

Problem 4 (Written: 20 pts): Solve exercise 13.2 in the textbook (p. 388). (Note the typo in the textbook: $V^*(s, a)$ should be $V^*(s)$.)

4 Reinforcement Learning: Nondeterministic Case

Suppose we modified the grid world in exercise 13.2 so that the reward function r(s, a) and the state transition function $\delta(s, a)$ are probabilistic:

• For the actions leading to the goal (those that currently have a reward of 10), the reward has the following probability distribution:

Reward r	P(r)
6	0.2
8	0.3
10	0.5

and for the rest all rewards are zero.

• The state transition $\delta(s, a)$ occurs with a probability of 70% for the intended direction, and 30% for the unintended direction if there is only one alternative direction, and 15% each for each unintended direction if there are two alternative directions.

Problem 5 (Program: 20 pts): Write a program to learn the Q values for the task above, according to the description in 13.4 (p. 381–382). Use a random policy.

Report (1) the Q(s, a) values, and also (2) the expected value of the reward r(s, a)

$$E[r(s,a)] = \frac{\sum_{t} immediate_reward_t(s,a)}{visits(s,a)}.$$

Problem 6 (Written: 15 pts): (1) Using the learned Q(s, a) values, calculate the $V^*(s)$ for each state (note that $V^*(s) = \max_{a'} Q(s, a')$). (2) Verify that equation 13.8 holds, using the $V^*(s)$ just calculated, and E[r(s, a)] calculated from the simulation. (3) Analytically derive E[r(s, a)], and compare with the results from (2).

Problem 7 (Written: 10 pts): For easier reference, let us name the states as follows:

s_1	s_2	s_3
s_4	G	s_5

Given the following assumptions (which are reasonable), derive the $V^*(s)$ and Q(s, a) values by hand, using equation 13.8 (and the fact that $V^*(s) = \max_{a'} Q(s, a')$):

- $V^*(s_1) = V^*(s_3)$ and $V^*(s_4) = V^*(s_5)$.
- For s_2, s_4 , and s_5 , $\operatorname{argmax}_{a'} Q(s, a')$ is the direction going into the goal G.