
CPSC 633-600 (Total 100 points)
Decision Tree Learning and Reinforcement Learning

See course web page for the due date.
Use csnet to submit your assignments.

Instructor: Yoonsuck Choe

February 18, 2009

1 Entropy

Given a random variable X that can take on values {⊕,	}, the entropy is defined as:

E(X) = −
∑

x∈{⊕,	}
P (X = x) log2 P (X = x).

Since P (X = ⊕) + P (X = 	) = 1, E(X) can be rewritten as a function of P (X = ⊕): Letting
p⊕ = P (X = ⊕):

E(X) = f(p⊕) = −p⊕ log2 p⊕ − (1− p⊕) log2(1− p⊕).

Figure 1 shows how f(p⊕) behaves as p⊕ changes.
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Figure 1: Entropy.

Problem 1 (Written: 5 pts): Extend the above analysis to a random variable Y that can take on values
{α, β, γ}. Given pα = P (Y = α), etc.,

1. Derive E(Y ) as a function of pα and pβ:

E(Y ) = f(pα, pβ) = ...

Note: pα + pβ + pγ = 1.0.
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2. For which values of pα and pβ does E(Y ) become maximal (no need to derive it exactly from
f(pα, pβ)–consider when it is maximal in the 2-value case)?

3. Explain why.

Problem 2 (Program: 15 pts): Write a short program to calculate f(pα, pβ) derived above, and obtain
the E(Y ) = f(pα, pβ) values for all combinations of pα, pβ ∈ {0.0, 0.1, 0.2, ..., 0.9, 1.0}, and plot in 3D
(Octave: use gsplot; Matlab: use surf; or draw by hand).

2 Decision Tree Learning (ID3)

Problem 3 (Written: 15 pts): You are trying to decide whether you want to submit your paper to a
particular conference or not, based on three criterions: location of the conference, prestige of the conference,
and chance of getting your paper accepted.

(1) Calculate the entropy of the following training set. (2) Calculate the information gain for each of the
three attributes, Location, Prestige, and Chance. (3) Which one is the best attribute to test first?

Example# Location Prestige Chance Submit?
1 Near High High Y
2 Far High Medium Y
3 Near Okay High Y
4 Far High High N
5 Near Okay Low N
6 Far High High Y
7 Far Okay High N
8 Far Okay Medium N
9 Near High High Y

10 Far High Medium Y

3 Reinforcement Learning: Deterministic Case

Problem 4 (Written: 20 pts): Solve exercise 13.2 in the textbook (p. 388). (Note the typo in the textbook:
V ∗(s, a) should be V ∗(s).)

4 Reinforcement Learning: Nondeterministic Case

Suppose we modified the grid world in exercise 13.2 so that the reward function r(s, a) and the state transi-
tion function δ(s, a) are probabilistic:

• For the actions leading to the goal (those that currently have a reward of 10), the reward has the
following probability distribution:

Reward r P(r)
6 0.2
8 0.3

10 0.5

and for the rest all rewards are zero.
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• The state transition δ(s, a) occurs with a probability of 70% for the intended direction, and 30% for
the unintended direction if there is only one alternative direction, and 15% each for each unintended
direction if there are two alternative directions.

Problem 5 (Program: 20 pts): Write a program to learn the Q values for the task above, according to the
description in 13.4 (p. 381–382). Use a random policy.

Report (1) the Q(s, a) values, and also (2) the expected value of the reward r(s, a)

E[r(s, a)] =
∑

t immediate rewardt(s, a)
visits(s, a)

.

Problem 6 (Written: 15 pts): (1) Using the learned Q(s, a) values, calculate the V ∗(s) for each state
(note that V ∗(s) = maxa′ Q(s, a′)). (2) Verify that equation 13.8 holds, using the V ∗(s) just calculated, and
E[r(s, a)] calculated from the simulation. (3) Analytically derive E[r(s, a)], and compare with the results
from (2).

Problem 7 (Written: 10 pts): For easier reference, let us name the states as follows:

s1 s2 s3

s4 G s5

Given the following assumptions (which are reasonable), derive the V ∗(s) and Q(s, a) values by hand, using
equation 13.8 (and the fact that V ∗(s) = maxa′ Q(s, a′)):

• V ∗(s1) = V ∗(s3) and V ∗(s4) = V ∗(s5).

• For s2, s4, and s5, argmaxa′ Q(s, a′) is the direction going into the goal G.
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