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The Main Question

How can we understand what the pattern of activity in

the brain means? (cf. Freeman 2003)

1. How can scientists understand the pattern?

2. How does the brain itself make sense of its own

activity?
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Scientist vs. the Brain

I f
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fI
S

(a) External observer (b) Internal observer

• External observer (e.g., a neuroscientist) can figure

out how S relates to I (transformation f : I → S).

• Internal observer cannot: But the brain does this all

the time, so this does not seem right!
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Example: The Visual Cortex
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V1 Response to Input Gabor-like RFs

• With access to both I and S, Hubel and Wiesel

(1959) figured out f : I → S in V1 (oriented

Gabor-like receptive fields Jones and Palmer 1987).

• But even before that, and with access to only S,

humans had no problem perceiving orientation.
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Theories on RF Formation

Hoyer and Hyvärinen (2000)

Well-developed understanding on how RFs form:

• Olshausen and Field (1997): Sparse coding; Barlow (1994):

Redundancy reduction; Bell and Sejnowski (1997): Information

maximization; Miikkulainen et al. (2005): Self-organization

through Hebbian learning.

However, how is the resulting code to be used remains a question.
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A Metaphor of the Problem

• Imagine sitting in a room, looking at blinking lights, without

knowledge of the sensors nor the RFs.

• The lights may be due to any other sensory modality (as in

vision-audition rewiring Sur et al. 1999).

• Similar to the Chinese Room (Searle 1980): Problem of

“Symbol Grounding” (Harnad 1990).
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The Sensory Organ Can (Possibly)

Give Us a Clue

• It could have been caused by a visual input.
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But, Equally Likely Is ...

• It could have been caused by an auditory input.

• Sur et al., Rewiring cortex, Journal of Physiology,

41:33–43, 1999
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Rewiring Vision to Auditory Area

von Melchner et al. (2000); Sharma et al. (2000); Sur et al. (1999)

• Rewired auditory cortex develops visual cortex-like organization.

• Question: does it see light or hear light?
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Rewiring: Behavioral Results

von Melchner et al. (2000); Sharma et al. (2000)

• Ferret trained to behave differently for visual vs.

auditory stimuli: Behavior suggests that the ferret is

actually seeing light with its auditory cortex!
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Possible Solution: Through Action

• A major problem in the metaphor is the

passiveness of the whole situation.

• Adding action can help solve the problem.

• But why and how?
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Experimental Evidence

Held and Hein (1963)

• Active animal developed normal vision.

• Passive animal did not.

• Suggests the importance of action in vision.
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Experimental Evidence

Bach y Rita (1972; 1983)

• Vibrotactile array linked to a

video camera.

• Passive viewing results in

tactile sensation.

• Moving the camera results

in a vision-like sensation.

• Sensation as related to

voluntary/intentional

action may be the key!
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Theoretical Insights

• Philipona et al. (2003) showed that properties of

ambient space (such as the dimensionality) can be

inferred based on internal sensory input alone.

• The key concept is about the compensability

between ego-motion and the change in the

environmental input conveyed to exteroceptors.

14 http://faculty.cs.tamu.edu/choe

Part I: Learning the Meaning of

Internal State
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Approach: A Sensorimotor Agent

π

Filter
Bank

Sensor
Array

sfI a

Action
Vector

Visual FieldVisual Environment

Action

Perception

Choe and Bhamidipati (2003)

• A simple visuomotor agent.

• How can it learn about the visual world?

• What should be the objective (or goal) of learning?
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Action for Internal Invariance
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(a) Sensorimotor Agent (b) Sensory Invariance during Motion

• Agent can move its visual field.

• Movement in a certain direction (diagonal) causes

the sensory array to stay invariant over time.

• Property of such a movement exactly reflects the

property of the input I .
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Outline of Experimental Methods

• Input preparation.

• Orientation response calculation.

• Learning algorithm and policy generation.
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Methods: Input Preparation
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• Convolve with Difference-of-Gaussian (DoG) filter

(15× 15).

• Then, sample a 31× 31 region.
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Methods: Orientation Response

• Find the vectorized dot product of the 31× 31 input
I and the n Gabor filters Gi (i = 1..n,
θ = b(i− 1)π/nc):

ri =
∑
x,y

Gi(x, y)I(x, y).

• The above results in a response vector r, and the
orientation response s:

s = arg max
i=1..n

ri
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Orientation Response
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Sensory state:

s = arg max
1≤θ≤n

rθ.
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Methods: Reinforcement Learning

(Reward)

• Immediate reward is measured as the dot product of

current and previous response vectors:

ρt+1 = rt · rt+1

• The task the agent is to learn a state-to-action

mapping so that it maximizes the reward ρ.
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Methods: Policy π
Suppose we know the probability P (a|s) (let us call this R(s, a)),

where stochastically generating action given the state s with this

probability maximizes the reward.

1. Given the current state st ∈ S, randomly pick action at ∈ A.

2. If at equals arg maxa∈A R(st, a),

(a) then perform action at,

(b) else perform action at with probability R(st, at).

3. Repeat steps 1 to 3 until exactly one action is performed.

In practice, momentum was added so that at+1 = at with a 30%

chance, and in step 2, if a random draw from [0..1] was less than

cR(st, at), then the action was accepted.
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Methods: Learning R(s, a)

• A simple update rule was used:

Rt+1(st, at) = Rt(st, at) + α ρt+1,

where α = 0.002 is the learning rate, and ρt+1 the

immediate reward.

• Rt+1(st, a) was then normalized by:

Rt+1(st, a) :=
Rt+1(st, a)∑

a′∈A
Rt+1(st, a′)

, for all a.
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Reward Probability Table

R(s ,a )
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• Reward probability R(s, a) can be tabulated.

• In an ideal case (world consists of straight lines only), we expect

to see two diagonal matrices (shaded gray, above).
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Results: Overview

1. Synthetic input and natural image input.

2. Learned R(s, a).

3. Error in R(s, a) and average reward ρ over time.

4. Distribution of reward ρ.

5. Gaze trajectory.
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Results: Learned R(s, a) for

Synthetic Input

(a) Initial (b) Final (c) Ideal

• Learned R(s, a) close to ideal.
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Results: Learned R(s, a) for Natural

Images

(a) Initial (b) Ideal

(c) Flowers (d) Ducks (e) Plant (f ) Oleander

• Learned R(s, a) close to ideal even for natural

image inputs.
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Results: Error in R and Average ρ
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• Left: Root-mean-squared error in R(s, a) compared

to the ideal case.

• Right: running average of immediate reward ρ:

µt = (1− α)rt + α µt−1, (µ1 = ρ1,

α = 0.999).
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Results: Error in R(s, a)
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Results: Average ρ
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Results: Distribution of ρ

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

-1 -0.8 -0.6 -0.4 -0.2  0  0.2  0.4  0.6  0.8  1

Fr
eq

ue
nc

y
Reward

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

-1 -0.8 -0.6 -0.4 -0.2  0  0.2  0.4  0.6  0.8  1

Fr
eq

ue
nc

y

Reward

(a) Initial (b) Final

Synthetic Input

• Initially, two peaks: near negative min and positive

max ρ.

• Near the end, only one peak: near positive max ρ.
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Results: Distribution of ρ
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Results: Gaze Traj. for Synth. Input

(a) Initial (b) Final

• Gaze trajectory reflects orientation represented by

internal state.
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Results: Gaze Traj. for Nat. Input
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Results: Gaze Traj. for Nat. Input
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Results: Demo
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Work in Progress: Q-Learning
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Trajectories from Q-Learning sessions (Choe and Smith 2006).
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Interpretation of the Results

π
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Perception

• Using invariance as the only criterion, particular

action pattern that has the same property as the

input that triggered the sensors was learned.

• Question: Can this approach be extended to

learning complex stimulus concepts?
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Part II: RF Learning
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Learning RFs along with Their

Grounding (Decoding)

• Grounding (decoding): Same as Part I.

• RFs develops through normalized Hebbian learning:

gij =
gij + α(Iij − gij)∑

mn gmn + α(Imn − gmn)
,

where gij is the afferent connection weight and Iij

the input pixel value.
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Experiments

• Effects of different action policy on RF learning.

– Random R(s, a)

– Ideal R(s, a)

• Simultaneous learning of RF and action policy.

– RF learning through normalized Hebbian learning

– Reinforcement learning of R(s, a) based on

internal-state invariance
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Effects of R(s, a) on RF Learning

Fixed Random R Fixed Ideal R

RF w/ Random Policy RF w/ Ideal Policy

Reference RFs Reference RFs
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Simul. Learning of RFs & R(s, a)

Learned RFs

Learned R(s, a)

• Seemingly unordered RFs and R(s, a) results.
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Reordering RFs
RFs

R(s,a)

RFs

R(s,a)Reorder

• The R(s, a) result looks bad because each row’s

corresponding RF orientation is not ordered.

• Reordering RF orientation reorders the rows in

R(s, a).
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Reordered RFs and R(s, a)

Reference RFs

Reordered final RFs

Reordered final R(s, a)

• However, reordering the RFs and their

corresponding R(s, a) rows shows the true

underlying structure! (Not perfect, but a good start!)
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Part II: Summary

• Action policy strongly influences RF properties, by

altering the input statistics.

• Certain action policies may give better RFs, faster.

• Receptive fields and action policy can be learned

simultaneously, from scratch, thus allowing

encoding/decoding to evolve together.
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Part III: Learning Complex Object

Concepts
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Learning About Complex Objects

0o

45o

90o

135o

0 200 400 600 800 1000 1200

S
ta

te�

Time

(a) Eye position (large input) (b) Internal state (large input)

0o

45o

90o

135o

0 200 400 600 800 1000 1200

S
ta

te�

Time

(c) Eye position (small input) (d) Internal state (small input)

• For complex objects, a history of sensory activity may be needed

(i.e., some form of memory).

• Invariance can be detected in the spatiotemporal pattern of

sensor activity.
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Supporting Evidence?

Yarbus (1967)

• When we look at objects, our gaze wanders around.

• Could such an interaction be necessary for object

recognition?
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Advantage of Motor-Based Memory

(Habit, or Skill)
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(a) Sensor-based Representation (b) Motor-based Representation

• Sensor-based representations may be hard to learn

and inefficient.

• Motor-based approaches may generalize better.

• Comparison: Make both into a 900-D vector and

compare backpropagation learning performance.
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Class Separability
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(a) Visual Memory (b) Motor Memory

• Comparison of PCA projection of 1,000 data points

in the visual and motor memory representations.

• Motor memory is clearly separable.
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Speed and Accuracy of Learning
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• Motor-based memory resulted in faster and more

accurate learning (10 trials).
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Summary

• Internal observer can learn about the properties of

the external environment – through action

maximizing invariance in neural activity.

• Such actions closely reflect the property of the

stimulus that triggered the sensory neuron to fire:

Meaning of the spike recovered (through action)!

• Main contribution: The invariance criterion for

autonomously learning the meaning of neural

states.
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Related Work (Selected)
• Piaget (1952): Sensorimotor period in child development

• Freeman (1999): Brain creates meaning through action and

choices. Also see Kozma and Freeman (2003) for a KIV model of

the emergence of goal-directed, intentional behavior.

• O’Regan and Noë (2001): Sensorimotor contingency theory

• Philipona et al. (2003): Inferring space through sensorimotor

interaction

• Rizzolatti et al. (2001): Mirror neurons

• Gibson (1950): Direct perception of invariance and affordance

• Harnad (1990): Symbol grounding on robotic capabilities.

• Taylor (1999): Corollary discharge and awareness of attention

movement prior to sensory awareness.
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Discussion

• Why is knowing ones own action any easier than

perceptual interpretation?: Knowledge of own

action may be more immediate than perception (cf.

Moore 1996, citing Bergson).

• What gives rise to voluntary, intentional action

and why is it special? (Freeman 1999; Kozma and

Freeman 2003; Taylor 1999).

• A different view of invariance: Not (only) something

to be detected in the environment (cf. Gibson 1950),

but something that we actively seek within.
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Discussion (Cont’d)

• Why not just analyze the input directly?: The raw

input is only available at the immediate sensory

surface.

• What about other sensory modalities (such as

touch, olfaction, or audition)?

• The learning scheme depends on structure in the

environment: If the environment didn’t have

structure, the agent can never learn.
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Discussion (Cont’d)

• Relation to mirror neurons (Rizzolatti et al. 2001)?

• Role of attention (e.g. Rensink et al. 1997; Taylor

1999)?: Attention may be needed when ambiguities

are present.

• Do motor primitives restrict the kind of sensory

property that can be learned? What kinds of motor

primitive do we have?
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Discussion (Cont’d)

• What about meaning other than sensorimotor-like,

such as reinforcement signals (Rolls 2001) or

“feeling” (Harnad 2001)?

• Grounding on perception alone may not be

sufficient: cf. Perceptual symbol system (Barsalou

et al. 2003).

• What to make of the segregation in the

dorsal–ventral pathway?

(Goodale and Milner 1992).
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Predictions

• Perceived orientation of a line can be altered by eye

movement in the direction of incompatible

orientation.

• Motor structures (cerebellum, basal ganglia) may be

intimately involved in semantics.

• Geometrical understanding may be limited by the

motor primitive repertoire.
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Future Work (and Work in Progress)

• Lateral inhibition in sensory array.

• Crossmodal association through sensory invariance.

• Extending to more complex concepts.
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Conclusions

• We must ask how the brain understands itself.

• Autonomous understanding of own internal state is

non-trivial without direct access to the stimulus.

• Action can help solve the conundrum.

• Action that maintains invariance in internal state can

recover meaning (the property of the stimulus).
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Why Do We Have a Brain?

Tree

(no Brain)

Tunicate

Free-floating

(w/ Brain)

Tunicate

Settled

(w/o Brain)

• Brain vs. no brain

Sources: http://homepages.inf.ed.ac.uk/jbednar/ and http://bill.srnr.arizona.edu/classes/182/Lecture-9.htm
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